Advertisement

Journal of Microbiology

, Volume 51, Issue 6, pp 777–782 | Cite as

Lactobacillus paracasei subsp. paracasei LC01 positively modulates intestinal microflora in healthy young adults

  • Hao Zhang
  • Jing Sun
  • Xianting Liu
  • Chuan Hong
  • Yuanbo Zhu
  • Aiping Liu
  • Siqi Li
  • Huiyuan Guo
  • Fazheng RenEmail author
Microbial Ecology and Environmental Microbiology

Abstract

Lactobacillus paracasei subsp. paracasei LC01 (LC01) can tolerate intestinal stresses and has antioxidant activity. To evaluate the effect of the bacterium on human intestinal microflora, a randomized, double-blind, placebo-controlled human trial was carried out. Fifty-two healthy adult volunteers were randomized equally to two groups. One group consumed 12% (wt/vol) skimmed milk supplemented with 1010 CFU of LC01 each day for the 4-week treatment period, and then consumed placebo in the next treatment period, separated by a 2-week washout. The other group followed the reverse order. Group-specific real-time PCR and biochemical analyses was used to determine the intestinal bacterial composition of fecal samples collected at the end of every period, and the concentration of short-chain fatty acids and ammonia. A significant inhibition in fecal Escherichiacoli and increase in Lactobacillus, Bifidobacterium, and Roseburiaintestinalis were observed after consumption of LC01. Acetic acid and butyric acid were significantly higher in the probiotic stage and fecal ammonia was significantly lower. The results indicated a modulation effect of LC01 on the intestinal microflora of young adults, suggesting a beneficial effect on bowel health. LC01 may have potential value as a probiotic.

Keywords

human trial Lactobacillus paracasei subsp. paracasei LC01 intestinal microflora short-chain fatty acid ammonia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2013_3279_MOESM1_ESM.pdf (41 kb)
Supplementary material, approximately 41.0 KB.

References

  1. Bartosch, S., Fite, A., Macfarlane, G.T., and McMurdo, M.E.T. 2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol.70, 3575–3581.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bekkali, N.L.H., Bongers, M.E.J., Van den Berg, M.M., Liem, O., and Benninga, M.A. 2007. The role of a probiotics mixture in the treatment of childhood constipation: a pilot study. Nutr. J.6, 1–6.CrossRefGoogle Scholar
  3. Bosch, M., Rodriguez, M., Garcia, F., Fernandez, E., Fuentes, M.C., and Cune, J. 2012. Probiotic properties of Lactobacillus plantarum CECT 7315 and CECT 7316 isolated from faeces of healthy children. Lett. Appl. Microbiol.54, 240–246.PubMedCrossRefGoogle Scholar
  4. Brinkworth, G.D., Noakes, M., Clifton, P.M., and Bird, A.R. 2009. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br. J. Nutr.101, 1493–1502.PubMedCrossRefGoogle Scholar
  5. Chander, H., Majumdar, S., Sapru, S., and Rishi, P. 2006. 55 kDa outer-membrane protein from short-chain fatty acids exposed Salmonella enterica serovar Typhi induces apoptosis in macrophages. Antonie van Leeuwenhoek89, 317–323.PubMedCrossRefGoogle Scholar
  6. Costabile, A., Kolida, S., Klinder, A., Gietl, E., Baeuerlein, M., Frohberg, C., Landschuetze, V., and Gibson, G.R. 2010. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br. J. Nutr.104, 1007–1017.PubMedCrossRefGoogle Scholar
  7. Cummings, J.H. and Bingham, S.A. 1987. Dietary fiber, fermentation and large bowel-cancer. Cancer Surv.6, 601–621.PubMedGoogle Scholar
  8. Egan, L.P., Boda, K., and Varady, J. 1986. Regulation of nitrogen metabolism and recycling, pp. 386–402. In Milligan, L.P., Grovum, W.L., and Dodson, A. (ed.), Control of digestion and metabolism in ruminants-1986. Prentice-Hall, Englewood Cliffs, N.J., USA.Google Scholar
  9. FAO/WHO. 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria.Google Scholar
  10. Fernandez de Palencia, P., Lopez, P., Corbi, A.L., Pelaez, C., and Requena, T. 2008. Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. Eur. Food Res. Technol.227, 1475–1484.CrossRefGoogle Scholar
  11. Gibson, G.R., Probert, H.M., Van Loo, J., Rastall, R.A., and Roberfroid, M.B. 2004. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev.17, 259–275.PubMedCrossRefGoogle Scholar
  12. Goossens, D., Jonkers, D., Russel, M., Stobberingh, E., van den Bogaard, A., and Stockbrugger, R. 2003. The effect of Lactobacillus plantarum 299v on the bacterial composition and metabolic activity in faeces of healthy volunteers: a placebo-controlled study on the onset and duration of effects. Aliment. Pharmacol. Ther.18, 495–505.PubMedCrossRefGoogle Scholar
  13. Hebuterne, X. 2003. Gut changes attributed to ageing: effects on intestinal microflora. Curr. Opin. Clin. Nutr. Metab. Care6, 49–54.PubMedCrossRefGoogle Scholar
  14. Heilig, H., Zoetendal, E.G., Vaughan, E.E., Marteau, P., Akkermans, A.D.L., and de Vos, W.M. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol.68, 114–123.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Huang, Y.L. and Chau, C.F. 2012. Improvement in intestinal function of hamsters as influenced by consumption of polysaccharide-rich sage weed extracts. Food Chem.133, 1618–1623.CrossRefGoogle Scholar
  16. Isolauri, E., Kalliomaki, M., Laitinen, K., and Salminen, S. 2008. Modulation of the maturing gut barrier and microbiota: A novel target in allergic disease. Curr. Pharm. Des.14, 1368–1375.PubMedCrossRefGoogle Scholar
  17. Kim, H.S., Chae, H.S., Jeong, S.C., Ham, J.S., Im, S.K., Ahn, C.N., and Lee, J.M. 2005. Antioxidant activity of some yogurt starter cultures. Asian-Australas. J. Anim. Sci.18, 255–258.Google Scholar
  18. Larsen, C.N., Nielsen, S., Kaestel, P., Brockmann, E., Bennedsen, M., Christensen, H.R., Eskesen, D.C., Jacobsen, B.L., and Michaelsen, K.F. 2006. Dose-response study of probiotic bacteria Bifidobacterium animalis subsp lactis BB-12 and Lactobacillus paracasei subsp paracasei CRL-341 in healthy young adults. Eur. J. Clin. Nutr.60, 1284–1293.PubMedCrossRefGoogle Scholar
  19. Makivuokko, H., Forssten, S., Saarinen, M., Ouwehand, A., and Rautonen, N. 2010. Synbiotic effects of lactitol and Lactobacillus acidophilus NCFMTM in a semi-continuous colon fermentation model. Benef. Microbes1, 131–137.PubMedCrossRefGoogle Scholar
  20. Malinen, E., Kassinen, A., Rinttila, T., and Palva, A. 2003. Comparison of real-time PCR with SYBR Green I or 5 -nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiol-SGM.149, 269–277.CrossRefGoogle Scholar
  21. Matur, E. and Eraslan, E. 2012. The impact of probiotics on the gastrointestinal physiology. pp. 51–74. In Brzozowski, T. (ed.), New advances in the basic and clinical gastroenterology. InTech.Google Scholar
  22. Nadkarni, M.A., Martin, F.E., Jacques, N.A., and Hunter, N. 2002. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiol-SGM.148, 257–266.Google Scholar
  23. O’Toole, P.W. and Claesson, M.J. 2010. Gut microbiota: Changesz throughout the lifespan from infancy to elderly. Int. Dairy J.20, 281–291.CrossRefGoogle Scholar
  24. Perez Chaia, A. and Oliver, G. 2003. Intestinal microflora and metabolic activity, pp. 77–98. In Fuller, R. and Perdigón, G. (ed.), Gut Flora, Nutrition, Immunity and Health-2003. Blackwell Publishing, Oxford, England.Google Scholar
  25. Rabbani, G.H., Albert, M.J., Rahman, H., and Chowdhury, A.K. 1999. Short-chain fatty acids inhibit fluid and electrolyte loss induced by cholera toxin in proximal colon of rabbit in vivo. Dig. Dis. Sci.44, 1547–1553.PubMedCrossRefGoogle Scholar
  26. Riezzo, G., Orlando, A., D’Attoma, B., Guerra, V., Valerio, F., Lavermicocca, P., De Candia, S., and Russo, F. 2012. Randomised clinical trial: efficacy of Lactobacillus paracasei-enriched artichokes in the treatment of patients with functional constipation — a double-blind, controlled, crossover study. Aliment. Pharmacol. Ther.35, 441–450.PubMedCrossRefGoogle Scholar
  27. Rinttila, T., Kassinen, A., Malinen, E., Krogius, L., and Palva, A. 2004. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol.97, 1166–1177.PubMedCrossRefGoogle Scholar
  28. Sakata, T., Kojima, T., Fujieda, M., Miyakozawa, M., Takahashi, M., and Ushida, K. 1999. Probiotic preparations dose-dependently increase net production rates of organic acids and decrease that of ammonia by pig cecal bacteria in batch culture. Dig. Dis Sci.44, 1485–1493.PubMedCrossRefGoogle Scholar
  29. Salminen, S., Laine, M., Wright, A.V., Vuopio-Varkila, J., Korhonen, T., and Mattila-Sandholm, T. 1996. Development of selection criteria for probiotic strains to assess their potential in functional foods: a Nordic and European approach. Biosci. Microflora15, 61–67.Google Scholar
  30. Salminen, S. and Salminen, E. 1997. Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection. Scand. J. Gastroenterol.32, 45–48.Google Scholar
  31. Sato, H. and Nakajima, J. 2005. Fecal ammonia, urea, volatile fatty acid and lactate levels in dairy cows and their pathophysiological significance during diarrhea. Anim. Sci. J.76, 595–599.CrossRefGoogle Scholar
  32. Valerio, F., de Candia, S., Lonigro, S.L., Russo, F., Riezzo, G., Orlando, A., De Bellis, P., Sisto, A., and Lavermicocca, P. 2011. Role of the probiotic strain Lactobacillus paracasei LMGP22043 carried by artichokes in influencing faecal bacteria and biochemical parameters in human subjects. J. Appl. Microbiol.111, 155–164.PubMedCrossRefGoogle Scholar
  33. Verdenelli, M.C., Silvi, S., Cecchini, C., Orpianesi, C., and Cresci, A. 2011. Influence of a combination of two potential probiotic strains, Lactobacillus rhamnosus IMC 501and Lactobacillus paracasei IMC 502on bowel habits of healthy adults. Lett. Appl. Microbiol.52, 596–602.PubMedCrossRefGoogle Scholar
  34. Via, L.E. and Falkinham, J.O. 1995. Comparison of methods for isolation of Mycobacterium-avium complex DNA for use in PCR and RAPD fingerprinting. J. Microbiol. Methods21, 151–161.CrossRefGoogle Scholar
  35. Visek, W.J. 1984. Ammonia: Its effects on biological system, metabolic hormones, and reproduction. J. Dairy Sci.67, 481–498.PubMedCrossRefGoogle Scholar
  36. Woods, J.R., Williams, J.G., and Tavel, M. 1989. The two-period crossover design in medical research. Ann. Intern. Med.110, 560–566.PubMedCrossRefGoogle Scholar
  37. Worthley, D.L., Whitehall, V.L.J., Le Leu, R.K., Irahara, N., Buttenshaw, R.L., Mallitt, K.-A., Greco, S.A., Ramsnes, I., Winter, J., Hu, Y., andet al. 2011. DNA methylation in the rectal mucosa is associated with crypt proliferation and fecal short-chain fatty acids. Dig. Dis Sci.56, 387–396.PubMedCrossRefGoogle Scholar
  38. Wutzke, K.D., Lotz, M., and Zipprich, C. 2010. The effect of pre- and probiotics on the colonic ammonia metabolism in humans as measured by lactose-[15N2] ureide. Eur. J. Clin. Nutr.64, 1215–1221.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hao Zhang
    • 1
    • 2
  • Jing Sun
    • 1
  • Xianting Liu
    • 1
  • Chuan Hong
    • 1
  • Yuanbo Zhu
    • 1
  • Aiping Liu
    • 3
  • Siqi Li
    • 1
  • Huiyuan Guo
    • 1
  • Fazheng Ren
    • 1
    • 2
    Email author
  1. 1.Beijing Laboratory for Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingP. R. China
  2. 2.Beijing Higher Institution Engineering Research Center of Animal ProductBeijingP. R. China
  3. 3.Diary DepartmentMengNiu Diary CompanyBeijingP. R. China

Personalised recommendations