Journal of Microbiology

, Volume 51, Issue 3, pp 389–393 | Cite as

The effect of dietary intake of the acidic protein fraction of bovine colostrum on influenza A (H1N1) virus infection

  • Mei Ling Xu
  • Hyoung Jin Kim
  • Don Yong Chang
  • Hong-Jin Kim


Acidic protein levels in the milk decrease markedly as lactation progresses, suggesting that it is an important part of the colostrum. However, little attention has been paid to their biological function. In this study, we isolated the acidic protein fraction of bovine colostrum (AFC, isoelectric point <5) by anion-exchange chromatography, and investigated the effect of its dietary intake on influenza A (H1N1) virus infection. 100% of mice infected with 1 LD50 of the virus survived when administered AFC for 14 days prior to infection, compared with 33% survival when administered phosphate buffered saline (PBS). Moreover, consumption of AFC reduced the weight loss associated with infection. We propose that dietary intake of AFC has a prophylactic effect on influenza A virus infection.


bovine colostrums acidic protein dietary intake influenza A virus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2013_2683_MOESM1_ESM.pdf (159 kb)
Supplementary material, approximately 159 KB.


  1. Asakuma, S., Akahori, M., Kimura, K., Watanabe, Y., Nakamura, T., Tsunemi, M., Arai, I., Sanai, Y., and Urashima, T. 2007. Sialyl oligosaccharides of human colostrum: Changes in concentration during the first three days of lactation. Biosci. Biotechnol. Biochem.71, 1447–1451.PubMedCrossRefGoogle Scholar
  2. Benson, K.F., Carter, S.G., Patterson, K.M., Patel, D., and Jensen, G.S. 2012. A novel extract from bovine colostrum whey supports anti-bacterial and anti-viral innate immune functions in vitro and in vivo: I. Enhanced immune activity in vitro translates to improved microbial clearance in animal infection models. Prev. Med.54Suppl, S116–123.PubMedCrossRefGoogle Scholar
  3. Bezkorovainy, A. 1965. Comparative study of the acid glycoproteins isolated from bovine serum, colostrum, and milk whey. Arch. Biochem. Biophys.110, 558–567.PubMedCrossRefGoogle Scholar
  4. Brinkworth, G.D. and Buckley, J.D. 2003. Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. Eur. J. Nutr.42, 228–232.PubMedCrossRefGoogle Scholar
  5. Centers for Disease Control and Prevention (CDC). 2010. Estimates of deaths associated with seasonal influenza — United States, 1976–2007. MMWR Morb. Mortal. Wkly. Rep.59, 1057–1062.Google Scholar
  6. Claud, E.C., Savidge, T., and Walker, W.A. 2003. Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr. Res.53, 419–425.PubMedCrossRefGoogle Scholar
  7. Fendrick, A.M., Monto, A.S., Nightengale, B., and Sarnes, M. 2003. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch. Intern. Med.163, 487–494.PubMedCrossRefGoogle Scholar
  8. Gatherer, D. 2009. The 2009 H1N1 influenza outbreak in its historical context. J. Clin. Virol.45, 174–178.PubMedCrossRefGoogle Scholar
  9. Glaser, L., Stevens, J., Zamarin, D., Wilson, I.A., Garcia-Sastre, A., Tumpey, T.M., Basler, C.F., Taubenberger, J.K., and Palese, P. 2005. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol.79, 11533–11536.PubMedCrossRefGoogle Scholar
  10. Goldstein, E., Cobey, S., Takahashi, S., Miller, J.C., and Lipsitch, M. 2011. Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: A statistical method. PLoS Med.8, e1001051.PubMedCrossRefGoogle Scholar
  11. Johnson, J.L., Godden, S.M., Molitor, T., Ames, T., and Hagman, D. 2007. Effects of feeding heat-treated colostrum on passive transfer of immune and nutritional parameters in neonatal dairy calves. J. Dairy Sci.90, 5189–5198.PubMedCrossRefGoogle Scholar
  12. Jouan, P.N., Pouliot, Y., Gauthier, S.F., and Laforest, J.P. 2006. Hormones in bovine milk and milk products: A survey. Int. Dairy J.16, 1408–1414.CrossRefGoogle Scholar
  13. Kelly, G.S. 2003. Bovine colostrums: A review of clinical uses. Altern. Med. Rev.8, 378–394.PubMedGoogle Scholar
  14. Kobayashi, Y., Fukami, T., Nakajima, A., Watanabe, A., Nakajima, M., and Yokoi, T. 2012. Species differences in tissue distribution and enzyme activities of arylacetamide deacetylase in human, rat, and mouse. Drug Metab. Dispos.40, 671–679.PubMedCrossRefGoogle Scholar
  15. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685.PubMedCrossRefGoogle Scholar
  16. Martin-Sosa, S., Martin, M.J., Garcia-Pardo, L.A., and Hueso, P. 2003. Sialyloligosaccharides in human and bovine milk and in infant formulas: Variations with the progression of lactation. J. Dairy Sci.86, 52–59.PubMedCrossRefGoogle Scholar
  17. Matrosovich, M. and Klenk, H.D. 2003. Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev. Med. Virol.13, 85–97.PubMedCrossRefGoogle Scholar
  18. Patiroglu, T. and Kondolot, M. 2011. The effect of bovine colostrum on viral upper respiratory tract infections in children with immunoglobulin A deficiency. Clin. Respir. J. Doi: 10.1111/j.1752-1699X.2011.00268.x.Google Scholar
  19. Petschow, B.W. and Talbott, R.D. 1994. Reduction in virus-neutralizing activity of a bovine colostrum immunoglobulin concentrate by gastric acid and digestive enzymes. J. Pediatr. Gastroenterol. Nutr.19, 228–235.PubMedCrossRefGoogle Scholar
  20. Playford, R.J., Macdonald, C.E., and Johnson, W.S. 2000. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr.72, 5–14.PubMedGoogle Scholar
  21. Reed, L. and Muench, M. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg.27, 493–497.Google Scholar
  22. Robison, J.D., Stott, G.H., and Denise, S.K. 1988. Effects of passive-immunity on growth and survival in the dairy heifer. J. Dairy Sci.71, 1283–1287.PubMedCrossRefGoogle Scholar
  23. Sandbulte, M.R., Westgeest, K.B., Gao, J., Xu, X., Klimov, A.I., Russell, C.A., Burke, D.F., Smith, D.J., Fouchier, R.A., and Eichelberger, M.C. 2011. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proc. Natl. Acad. Sci. USA108, 20748–20753.PubMedCrossRefGoogle Scholar
  24. Senda, A., Fukuda, K., Ishii, T., and Urashima, T. 2011. Changes in the bovine whey proteome during the early lactation period. Anim. Sci. J.82, 698–706.PubMedCrossRefGoogle Scholar
  25. Struff, W.G. and Sprotte, G. 2007. Bovine colostrum as a biologic in clinical medicine: a review. Part I: Biotechnological standards, pharmacodynamic and pharmacokinetic characteristics and principles of treatment. Int. J. Clin. Pharmacol. Ther.45, 193–202.PubMedGoogle Scholar
  26. Wang, B. and Brand-Miller, J. 2003. The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr.57, 1351–1369.PubMedCrossRefGoogle Scholar
  27. Webster, R.G., Laver, W.G., Air, G.M., and Schild, G.C. 1982. Molecular mechanisms of variation in influenza viruses. Nature296, 115–121.PubMedCrossRefGoogle Scholar
  28. World Health Organization. 2009. Influenza (Seasonal). Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mei Ling Xu
    • 1
  • Hyoung Jin Kim
    • 1
  • Don Yong Chang
    • 1
  • Hong-Jin Kim
    • 1
  1. 1.College of PharmacyChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations