Journal of Microbiology

, Volume 51, Issue 1, pp 82–87 | Cite as

Identification of Petriella setifera LH and characterization of its crude carboxymethyl cellulase for application in denim biostoning

  • Xi-Hua Zhao
  • Wei Wang
  • Dong-Zhi Wei
Microbial Genetics, Genomics and Molecular Biology


The phylogenetic tree of the partial elongation factor-1 alpha gene fits better than the partial 18S rDNA for generic classification. From the results of the molecular tree and analysis of morphological characters, Petriella setifera LH was identified. It can be induced to produce carboxymethyl cellulase (CMCase). The crude CMCase only shows a 44.1-kDa band by activity staining after SDS-PAGE. It is optimally active at 55°C and pH 6.0, and is stable from pH 5.0–8.0 and at 45°C or below. The crude CMCase, which is not affected by Co2+, is strongly activated in the presence of 10 mM Na+, K+, Ca2+, Mg2+, EDTA, and Mn2+. It is strongly inhibited by 10 mM Fe2+, Pb2+, Al3+, Zn2+, Ag+, Fe3+, and Cu2+. When compared with denim treatment by Novoprime A800 (a commercial neutral cellulase), crude CMCase exhibits a similar fabric weight loss and indigo dye removal. These results indicate that crude CMCase has potential application in denim biostoning.


neutral carboxymethyl cellulase Petriella setifera LH biostoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barron, G.L., Cain, R.F., and Gilman, J.C. 1961. A revision of the genus Petriella. Can. J. Bot. 39, 837–845.CrossRefGoogle Scholar
  2. Borneman, J. and Hartin, R.J. 2000. PCR primers that amplify fungal rRNA genes from environmental samples. Appl. Environ. Microbiol. 66, 4356–4360.PubMedCrossRefGoogle Scholar
  3. Campos, R., Cavaco-Paulo, A., Andreaus, J., and Gübitz, G. 2002. Indigo-cellulase interactions. Text. Res. J. 70, 532–536.CrossRefGoogle Scholar
  4. Chaabouni, S.E., Mechichi, T., Limam, F., and Marzouki, N. 2005. Purification and characterization of two low molecular weight endoglucanases produced by Penicillium occitanis mutant pol 6. Appl. Biochem. Biotechnol. 125, 99–112.PubMedCrossRefGoogle Scholar
  5. Chen, J., Wang, Q., Hua, Z.Z., and Du, G.C. 2007. Research and application of biotechnology in textile industries in China. Enzyme Microb. Technol. 40, 1651–1655.CrossRefGoogle Scholar
  6. Cho, S., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, T.P., and Zhao, S. 1995. A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. Mol. Biol. Evol. 12, 650–656.PubMedGoogle Scholar
  7. Coral, G., Arikan, B., Ünaldi, M.N., and Guvenmes, H. 2002. Some properties of crude carboxymethyl cellulose of Aspergillus niger Z10 wild-type strain. Turk. J. Biol. 26, 209–213.Google Scholar
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  9. Hirvonen, M. and Papageorgiou, A.C. 2003. Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: Mechanistic implications based on the free and cellobiose-bound forms. J. Mol. Biol. 329, 403–410.PubMedCrossRefGoogle Scholar
  10. Huang, X.P. and Monk, C. 2004. Purification and characterization of a cellulase (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. nov. World J. Microbiol. Biotechnol. 20, 85–92.CrossRefGoogle Scholar
  11. Issakinen, J., Jalava, J., Saariand, J., and Campbell, C.K. 1999. Relationship of Scedosporium prolificans with Petriella confirmed by partial LSU rDNA sequences. Mycol. Res. 103, 1179–1184.CrossRefGoogle Scholar
  12. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.PubMedCrossRefGoogle Scholar
  13. Klahorst, S., Kumar, A., and Mullins, M. 1994. Optimizing the use of cellulase enzymes. Text. Chem. Color. 26, 13–18.Google Scholar
  14. Lee, Y.J., Kim, B.K., Lee, B.H., Jo, K.I., Lee, N.K., Chung, C.H., Lee, Y.C., and Lee, J.W. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99, 378–386.PubMedCrossRefGoogle Scholar
  15. Mawadza, C., Hatti-Kaul, R., Zvauya, R., and Mattiasson, B. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177–187.PubMedCrossRefGoogle Scholar
  16. Miettinen-Oinonen, A., Londesborough, J., Joutsjoki, V., Lantto, R., Vehmaanper. 2004. Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzyme Microb. Technol. 34, 332–341.CrossRefGoogle Scholar
  17. Miller, G.L., Blum, R., Glennon, W.E., and Burton, A.L. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2, 127–132.CrossRefGoogle Scholar
  18. Mou, D.G., Lim, K.K., and Shen, H.P. 1991. Microbial agents for decolorization of dye wastewater. Biotechnol. Adv. 9, 613–622.PubMedCrossRefGoogle Scholar
  19. Murashima, K., Kosugi, A., and Doi, R.H. 2002a. Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans. J. Bacteriol. 184, 5088–5095.PubMedCrossRefGoogle Scholar
  20. Murashima, K., Nishimura, T., Nakamura, Y., Koga, J., Moriya, T., Sumida, N., Yaguchi, T., and Kono, T. 2002b. Purification and characterization of new endo-1,4-β-d-glucanases from Rhizopus oryzae. Enzyme Microb. Technol. 30, 319–326.CrossRefGoogle Scholar
  21. Onsori, H., Zamani, M.R., Motallebi, M., and Zarghami, N. 2005. Identification of over producer strain of endo-β-1,4-glucanase in Aspergillus Species: Characterization of crude carboxymethyl cellulose. Afr. J. Biotechnol. 4, 26–30.Google Scholar
  22. Rehner, S.A. and Buckley, E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97, 84–98.PubMedCrossRefGoogle Scholar
  23. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  24. Schülein, M. 1997. Enzymatic properties of cellulases from Humicola insolens. J. Biotechnol. 57, 71–81.PubMedCrossRefGoogle Scholar
  25. Schülein, M. 2000. Protein engineering of cellulases. Biochim. Biophys. Acta 1543, 239–252.PubMedCrossRefGoogle Scholar
  26. Tamura, K. and Dudley, J. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24, 1596–1599.PubMedCrossRefGoogle Scholar
  27. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X Windows Interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.PubMedCrossRefGoogle Scholar
  28. Wu, S., Ding, S., Zhou, R., and Li, Z. 2007. Comparative characterization of a recombinant Volvariella volvacea endoglucanase I (EG1) with its truncated catalytic core (EG1-CM), and their impact on the bio-treatment of cellulose-based fabrics. J. Biotechnol. 130, 364–369.PubMedCrossRefGoogle Scholar
  29. Xie, Y., Wei, Y., and Hu, J.A. 2010. Depolymerization of chitosan with a crude cellulase preparation from Aspergillus niger. Appl. Biochem. Biotechnol. 160, 1074–1083.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Bioreactor Engineering, Newworld Institute of BiotechnologyEast China University of Science and TechnologyShanghaiP. R. China
  2. 2.College of Life ScienceJiangxi Normal UniversityNanchangP. R. China

Personalised recommendations