Advertisement

Journal of Microbiology

, Volume 51, Issue 3, pp 283–288 | Cite as

Flavobacterium aquaticum sp. nov., a member of the Bacteroidetes isolated from a freshwater reservoir

  • Siwon Lee
  • Jungnam Lee
  • Tae-Young Ahn
Microbial Systematics and Evolutionary Microbiology

Abstract

A novel bacterial strain, designated ARSA-111T, was isolated from a freshwater reservoir in Cheonan, Korea. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the isolate belonged to the genus Flavobacterium of phylum Bacteroidetes. The 16S rRNA gene sequence of strain ARSA-111T showed a high degree of sequence similarity to those of Flavobacteium cheonanense KACC 14972T (97.3%), F. aquatile JCM 20475T (97.1%), and other type strains of the genus Flavobacterium (< 97.0%). The phylogenetic tree and network analysis (i.e. median-joining) based on 16S rRNA gene sequences showed that strain ARSA-111T is most closely related to F. aquatile JCM 20475T. DNA-DNA hybridization experiment revealed 70% of genomic relatedness among strain ARSA-111T, F. aquatile JCM 20475T and F. cheonanense KACC 14972T. The isolate had iso-C15:1, iso-C15:0, and iso-C15:0 3-OH as predominant cellular fatty acids and MK-6 as a predominant menaquinone. The genomic DNA G+C content of the isolate was 35.6 mol%. On the basis of these data, strain ARSA-111T is considered to be a novel species of the genus Flavobacterium, for which the name Flavobacterium aquaticum sp. nov. is proposed. The type strain is strain ARSA-111T (=KACC 14973T =KCTC 23185T = JCM 17070T).

Keywords

Flavobacterium Bacteroidetes median-joining network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2013_2293_MOESM1_ESM.pdf (207 kb)
Supplementary material, approximately 206 KB.

References

  1. Anacker, R.L. and Ordal, E.J. 1955. Study of a bacteriophage infecting the myxobacterium Chondrococcus columnaris. J. Bacteriol.70, 738–741.PubMedGoogle Scholar
  2. Bandelt, H.J., Forster, P., and Rohl, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol.16, 37–48.CrossRefPubMedGoogle Scholar
  3. Bergey, D.H., Harrison, F.C., Breed, R.S., Hammer, B.W., and Huntoon, F.M. 1923. Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore, USA.Google Scholar
  4. Bernardet, J.F. and Bowman, J.P. 2011. Genus I. Flavobacterium Bergey et al. 1923. In Whitman, W. (ed.), Bergey’s Manual of Systematic Bacteriology, pp. 112–154, 2nd ed., Vol. 4, The Williams & Wilkins Co., Baltimore, USA.Google Scholar
  5. Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol.52, 1049–1070.CrossRefPubMedGoogle Scholar
  6. Bernardet, J.F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K., and Vandamme, P. 1996. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the Family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int. J. Syst. Evol. Microbiol.46, 128–148.Google Scholar
  7. Chun, J. and Bae, K.S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek78, 123–127.CrossRefPubMedGoogle Scholar
  8. Chun, J.S., Lee, J.H., Jung, Y.Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol.57, 2259–2261.CrossRefPubMedGoogle Scholar
  9. Cousin, S., Puker, O., and Stackebrandt, E. 2007. Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. Int. J. Syst. Evol. Microbiol.57, 243–249.CrossRefPubMedGoogle Scholar
  10. Hall, T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser.41, 95–98.Google Scholar
  11. Kim, J.H., Kim, K.Y., and Cha, C.J. 2009. Flavobacterium chungangense sp. nov., isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol.59, 1754–1758.CrossRefPubMedGoogle Scholar
  12. Lane, D.J. 1991. 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.). Wiley, Chichester, UK.Google Scholar
  13. Lee, S., Weon, H.Y., Han, K., and Ahn, T.Y. 2012. Flavobacterium dankookense sp. nov., isolated from a freshwater reservoir and emended descriptions of Flavobacterium cheonanense, F. chungnamense, F. koreense and F. aquatile. Int. J. Syst. Evol. Microbiol.62, 2378–2382.CrossRefPubMedGoogle Scholar
  14. Lee, S., Weon, H.Y., Kim, S.J., and Ahn, T.Y. 2011. Flavobacterium koreense sp. nov., Flavobacterium chungnamense sp. nov. and Flavobacterium cheonanense sp. nov., isolated from a freshwater reservoir. J. Microbiol.49, 387–392.CrossRefPubMedGoogle Scholar
  15. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid hromatography. Int. J. Syst. Bacteriol.39, 159–167.CrossRefGoogle Scholar
  16. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.CrossRefGoogle Scholar
  17. Moore, D.D. and Dowhan, D. 1995. Preparation and analysis of DNA. Current Protocols in Molecular Biology, pp. 2–11. In Ausubel, F.W., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.). Wiley, New York, USA.Google Scholar
  18. Park, M., Lu, S., Ryu, S.H., Chung, B.S., Park, W., Kim, C.J., and Jeon, C.O. 2006. Flavobacterium croceum sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol.56, 2443–2447.CrossRefPubMedGoogle Scholar
  19. Perry, L.B. 1973. Gliding motility in some non-spreading Flexibacteria. J. Appl. Bacteriol.36, 227–232.CrossRefPubMedGoogle Scholar
  20. Qu, J.H., Yuan, H.L., Li, H.F., and Deng, C.P. 2009. Flavobacterium cauense sp. nov., isolated from sediment of a eutrophic lake. Int. J. Syst. Evol. Microbiol.59, 2666–2669.CrossRefPubMedGoogle Scholar
  21. Seldin, L. and Dubnau, D. 1985. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int. J. Syst. Evol. Microbiol.35, 151–154.Google Scholar
  22. Sheu, S.H., Chiu, T.F., Young, C.C., Arun, A.B., and Chen, W.W. 2011. Flavobacterium macrobrachii sp. nov., isolated from a freshwater shrimp culture pond. Int. J. Syst. Evol. Microbiol.61, 1402–1407.CrossRefPubMedGoogle Scholar
  23. Skerman, V.B.D. 1967. A Guide to the Identification of the Genera of Bacteria, 2nd (ed.). Williams & Wilkins, Baltimore, USA.Google Scholar
  24. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. Methods for General and Molecular Bacteriology, pp. 607–654. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.). American Society for Microbiology. Washington, D.C., USA.Google Scholar
  25. Wang, Z.W., Liu, Y.H., Dai, X., Wang, B.J., Jiang, C.Y., and Liu, S.J. 2006. Flavobacterium saliperosum sp. nov., isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol.56, 439–442.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MicrobiologyDankook UniversityCheonanRepublic of Korea
  2. 2.Department of Nanobiomedical ScienceDankook UniversityCheonanRepublic of Korea

Personalised recommendations