Journal of Microbiology

, Volume 50, Issue 5, pp 785–791

Genome-wide enrichment screening reveals multiple targets and resistance genes for triclosan in Escherichia coli

  • Byung Jo Yu
  • Jung Ae Kim
  • Hyun Mok Ju
  • Soo-Kyung Choi
  • Seung Jin Hwang
  • Sungyoo Park
  • EuiJoong Kim
  • Jae-Gu Pan
Article

Abstract

Triclosan is a widely used biocide effective against different microorganisms. At bactericidal concentrations, triclosan appears to affect multiple targets, while at bacteriostatic concentrations, triclosan targets FabI. The site-specific antibiotic-like mode-of-action and a widespread use of triclosan in household products claimed to possibly induce cross-resistance to other antibiotics. Thus, we set out to define more systematically the genes conferring resistance to triclosan; A genomic library of Escherichia coli strain W3110 was constructed and enriched in a selective medium containing a lethal concentration of triclosan. The genes enabling growth in the presence of triclosan were identified by using a DNA microarray and confirmed consequently by ASKA clones overexpressing the selected 62 candidate genes. Among these, forty-seven genes were further confirmed to enhance the resistance to triclosan; these genes, including the FabI target, were involved in inner or outer membrane synthesis, cell-surface material synthesis, transcriptional activation, sugar phosphotransferase (PTS) systems, various transporter systems, cell division, and ATPase and reductase/dehydrogenase reactions. In particular, overexpression of pgsA, rcsA, or gapC conferred to E. coli cells a similar level of triclosan resistance induced by fabI overexpression. These results indicate that triclosan may have multiple targets other than well-known FabI and that there are several undefined novel mechanisms for the resistance development to triclosan, thus probably inducing cross antibiotic resistance.

Keywords

triclosan multiple targets genomic library resistance E. coli 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brötz-Oesterhelt, H. and Brunner, N.A. 2008. How many modes of action should an antibiotic have? Curr. Opin. Pharmacol. 8, 564–573.PubMedCrossRefGoogle Scholar
  2. Condell, O., Sheridan, Á., Power, K.A., Bonilla-Santiago, R., Sergeant, K., Renaut, J., Burgess, C., Fanning, S., and Nally, J.E. 2012. Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan. J. Proteomics 75, 4505–4519.PubMedCrossRefGoogle Scholar
  3. Costa, C.S. and Antón, D.N. 2001. Role of the ftsa1p promoter in the resistance of mucoid mutants of Salmonella enterica to mecillinam: Characterization of a new type of mucoid mutant. FEMS Microbiol. Lett. 200, 201–205.PubMedCrossRefGoogle Scholar
  4. Gomez Escalada, M., Russell, A.D., Maillard, J.Y., and Ochs, D. 2005. Triclosan-bacteria interactions: Single or multiple target sites? Lett. Appl. Microbiol. 41, 476–481.PubMedCrossRefGoogle Scholar
  5. Hall, B.G. and Xu, L. 1992. Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K12. Mol. Biol. Evol. 9, 688–706.PubMedGoogle Scholar
  6. Heath, R.J. and Rock, C.O. 2000. Microbiology: A triclosan-resistant bacterial enzyme. Nature 406, 145–146.PubMedCrossRefGoogle Scholar
  7. Heath, R.J., Rubin, J.R., Holland, D.R., Zhang, E., Snow, M.E., and Rock, C.O. 1999. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 274, 11110–11114.PubMedCrossRefGoogle Scholar
  8. Heath, R.J., Yu, Y.T., Shapiro, M.A., Olson, E., and Rock, C.O. 1998. Broad spectrum antimicrobial biocides target the fabI component of fatty acid synthesis. J. Biol. Chem. 273, 30316–30320.PubMedCrossRefGoogle Scholar
  9. Hirakawa, H., Nishino, K., Hirata, T., and Yamaguchi, A. 2003. Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J. Bacteriol. 185, 1851–1856.PubMedCrossRefGoogle Scholar
  10. Jones, R.D., Jampani, H.B., Newman, J.L., and Lee, A.S. 2000. Triclosan: A review of effectiveness and safety in health care settings. Am. J. Infect. Control. 28, 184–196.PubMedCrossRefGoogle Scholar
  11. Kitagawa, M., Ara, T., Arifuzzaman, M., Ioka-Nakamichi, T., Inamoto, E., Toyonaga, H., and Mori, H. 2006. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): Unique resources for biological research. DNA Res. 12, 291–299.Google Scholar
  12. Lynch, M.D., Warnecke, T., and Gill, R.T. 2007. Scales: Multiscale analysis of library enrichment. Nat. Methods 4, 87–93.PubMedCrossRefGoogle Scholar
  13. McMurry, L.M., Oethinger, M., and Levy, S.B. 1998a. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol. Lett. 166, 305–309.PubMedCrossRefGoogle Scholar
  14. McMurry, L.M., Oethinger, M., and Levy, S.B. 1998b. Triclosan targets lipid synthesis. Nature 394, 531–532.PubMedCrossRefGoogle Scholar
  15. Phan, T.N. and Marquis, R.E. 2006. Triclosan inhibition of membrane enzymes and glycolysis of Streptococcus mutans in suspensions and biofilms. Can. J. Microbiol. 52, 977–983.PubMedCrossRefGoogle Scholar
  16. Rahmati, S., Yang, S., Davidson, A.L., and Zechiedrich, E.L. 2002. Control of the acrAB multidrug efflux pump by quorum-sensing regulator sdiA. Mol. Microbiol. 43, 677–685.PubMedCrossRefGoogle Scholar
  17. Russell, A.D. 2004. Whither triclosan? J. Antimicrob. Chemother. 53, 693–695.PubMedCrossRefGoogle Scholar
  18. Saleh, S., Haddadin, R.N.S., Baillie, S., and Collier, P.J. 2011. Triclosan — an update. Lett. Appl. Microbiol. 52, 87–95.PubMedCrossRefGoogle Scholar
  19. Silver, L.L. 2007. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 6, 41–55.PubMedCrossRefGoogle Scholar
  20. Villalain, J., Mateo, C.R., Aranda, F.J., Shapiro, S., and Micol, V. 2001. Membranotropic effects of the antibacterial agent triclosan. Arch. Biochem. Biophy. 390, 128–136.CrossRefGoogle Scholar
  21. von der Ohe, P.C., Schmitt-Jansen, M., Slobodnik, J., and Brack, W. 2012. Triclosan-the forgotten priority substance? Environ. Sci. Pollut. Res. 19, 585–591.CrossRefGoogle Scholar
  22. Webber, M.A., Coldham, N.G., Woodward, M.J., and Piddock, L.J.V. 2008. Proteomic analysis of triclosan resistance in Salmonella enterica serovar typhimurium. J. Antimicrob. Chemother. 62, 92–97.PubMedCrossRefGoogle Scholar
  23. Wei, Y., Vollmer, A.C., and LaRossa, R.A. 2001. In vivo titration of mitomycin c action by four Escherichia coli genomic regions on multicopy plasmids. J. Bacteriol. 183, 2259–2264.PubMedCrossRefGoogle Scholar
  24. White, S.W., Zheng, J., Zhang, Y.M., and Rock, C.O. 2005. The structural biology of type II fatty acid biosynthesis. Ann. Rev. Biochem. 74, 791–831.PubMedCrossRefGoogle Scholar
  25. Yazdankhah, S.P., Scheie, A.A., Høiby, E.A., Lunestad, B.T., Heir, E., Fotland, T.Ø., Naterstad, K., and Kruse, H. 2006. Triclosan and antimicrobial resistance in bacteria: An overview. Microb. Drug Resist. 12, 83–90.PubMedCrossRefGoogle Scholar
  26. Yu, B.J., Kim, J.A., and Pan, J.G. 2010. Signature gene expression profile of triclosan-resistant Escherichia coli. J. Antimicrob. Chemother. 65, 1171–1177.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Byung Jo Yu
    • 1
  • Jung Ae Kim
    • 1
  • Hyun Mok Ju
    • 1
  • Soo-Kyung Choi
    • 1
  • Seung Jin Hwang
    • 2
  • Sungyoo Park
    • 2
  • EuiJoong Kim
    • 3
  • Jae-Gu Pan
    • 1
  1. 1.Systems and Synthetic Biology Research CenterKorea Research of Bioscience and Biotechnology (KRIBB)DaejeonRepublic of Korea
  2. 2.LG Household and Healthcare LtdDaejeonRepublic of Korea
  3. 3.GenoFocus Inc.DaejeonRepublic of Korea

Personalised recommendations