Journal of Microbiology

, Volume 50, Issue 5, pp 813–820

The production and immunogenicity of human papillomavirus type 58 virus-like particles produced in Saccharomyces cerevisiae

  • Hye-Lim Kwag
  • Hyoung Jin Kim
  • Don Yong Chang
  • Hong-Jin Kim


Human papillomavirus (HPV) is the cause of most cases of cervical cancer. HPV type 58 (HPV58) is the second most frequent cause of cervical cancer and high-grade squamous intraepithelial lesions (HSIL) in Asia and South / Central America, respectively. However, there is no vaccine against HPV58, although there are commercially available vaccines against HPV16 and 18. In this study, we produced HPV58 L1 protein from Saccharomyces cerevisiae, and investigated its immunogenicity. We first determined the optimum period of culture for obtaining HPV58 L1. We found that a considerable portion of the HPV58 L1 resulting from 48 h culture cannot be recovered by purification, while the HPV58 L1 resulting from 144 h culture is recovered efficiently: the yield of HPV58 L1 finally recovered from 144 h culture was 2.3 times higher than that from 48 h culture, although the production level of L1 protein from 144 h culture was lower than that from 48 h culture. These results indicate that the proportion of functional L1 protein from 144 h-cultured cells is significantly higher than that of 48 h-cultured cells. The HPV58 L1 purified from the 144 h culture was correctly assembled into structures similar to naturally occurring HPV virions. Immunization with the HPV58 L1 efficiently elicited anti-HPV58 neutralizing antibodies and antigen-specific CD4+ and CD8+ T cell proliferations, without the need for adjuvant. Our findings provide a convenient method for obtaining substantial amounts of highly immunogenic HPV58 L1 from S. cerevisiae.


human papillomavirus vaccine Saccharomyces cerevisiae virus-like particle immunogenicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2012_2292_MOESM1_ESM.pdf (262 kb)
Supplementary material, approximately 261 KB.


  1. Bao, Y.P., Li, N., Smith, J.S., and Qiao, Y.L. 2008. Human papillomavirus type distribution in women from Asia: a meta-analysis. Int. J. Gynecol. Cancer18, 71–79.PubMedCrossRefGoogle Scholar
  2. Bishop, B., Dasgupta, J., Klein, M., Garcea, R.L., Christensen, N.D., Zhao, R., and Chen, X.S. 2007. Crystal structures of four types of human papillomavirus L1 capsid proteins: understanding the specificity of neutralizing monoclonal antibodies. J. Biol. Chem.282, 31803–31811.PubMedCrossRefGoogle Scholar
  3. Bosch, F.X., Lorincz, A., Munoz, N., Meijer, C.J., and Shah, K.V. 2002. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol.55, 244–265.PubMedCrossRefGoogle Scholar
  4. Buck, C.B., Thompson, C.D., Pang, Y.Y., Lowy, D.R., and Schiller, J.T. 2005. Maturation of papillomavirus capsids. J. Virol.79, 2839–2846.PubMedCrossRefGoogle Scholar
  5. Chan, S.Y., Delius, H., Halpern, A.L., and Bernard, H.U. 1995. Analysis of genomic sequences of 95 papillomavirus types — Uniting typing, phylogeny, and taxonomy. J. Virol.69, 3074–3083.PubMedGoogle Scholar
  6. Chan, P.K., Li, W.H., Chan, M.Y., Ma, W.L., Cheung, J.L., and Cheng, A.F. 1999. High prevalence of human papillomavirus type 58 in Chinese women with cervical cancer and precancerous lesions. J. Med. Virol.59, 232–238.PubMedCrossRefGoogle Scholar
  7. Clifford, G., Franceschi, S., Diaz, M., Munoz, N., and Villa, L.L. 2006. Chapter 3: HPV type-distribution in women with and without cervical neoplastic diseases. Vaccine24, S3/26–34.CrossRefGoogle Scholar
  8. Conway, M.J., Alam, S., Ryndock, E.J., Cruz, L., Christensen, N.D., Roden, R.B., and Meyers, C. 2009. Tissue-spanning redox gradient-dependent assembly of native human papillomavirus type 16 virions. J. Virol.83, 10515–10526.PubMedCrossRefGoogle Scholar
  9. Conway, M.J. and Meyers, C. 2009. Replication and assembly of human papillomaviruses. J. Dent. Res.88, 307–317.PubMedCrossRefGoogle Scholar
  10. Garland, S.M. and Smith, J.S. 2010. Human papillomavirus vaccines: current status and future prospects. Drugs70, 1079–1098.PubMedCrossRefGoogle Scholar
  11. Hara, H., Honda, A., Suzuki, H., Sata, T., and Matsukura, T. 2004. Detection of human papillomavirus type 58 in polydactylous Bowen’s disease on the fingers and toes of a woman-concurrent occurrence of invasive vulval and cervical carcinomas. Dermatology209, 218–222.PubMedCrossRefGoogle Scholar
  12. Jiang, Z., Tong, G., Cai, B., Xu, Y., and Lou, J. 2011. Purification and immunogenicity study of human papillomavirus 58 virus-like particles expressed in Pichia pastoris. Protein Expr. Purif. 80, 203–210.PubMedCrossRefGoogle Scholar
  13. Kemp, T.J., Hildesheim, A., Safaeian, M., Dauner, J.G., Pan, Y., Porras, C., Schiller, J.T., Lowy, D.R., Herrero, R., and Pinto, L.A. 2011. HPV16/18 L1 VLP vaccine induces cross-neutralizing antibodies that may mediate cross-protection. Vaccine29, 2011–2014.PubMedCrossRefGoogle Scholar
  14. Kim, S.N., Jeong, H.S., Park, S.N., and Kim, H.-J. 2007. Purification and immunogenicity study of human papillomavirus type 16 L1 protein in Saccharomyces cerevisiae. J. Virol. Methods139, 24–30.PubMedCrossRefGoogle Scholar
  15. Kim, S.Y., Kim, H.J., and Kim, H.-J. 2011. Simple and convenient chromatography-based methods for purifying the pseudovirus of human papillomavirus type 58. Protein Expr. Purif.76, 103–108.PubMedCrossRefGoogle Scholar
  16. Kim, H.J., Kim, S.Y., Lim, S.J., Kim, J.Y., Lee, S.J., and Kim, H.-J. 2010a. One-step chromatographic purification of human papillomavirus type 16 L1 protein from Saccharomyces cerevisiae. Protein Expr. Purif.70, 68–74.PubMedCrossRefGoogle Scholar
  17. Kim, H.J., Lee, S.J., and Kim, H.-J. 2010b. Optimizing the secondary structure of human papillomavirus type 16 L1 mRNA enhances L1 protein expression in Saccharomyces cerevisiae. J. Biotechnol.150, 31–36.PubMedCrossRefGoogle Scholar
  18. Kim, H.J., Lim, S.J., Kim, J.Y., Kim, S.Y., and Kim, H.-J. 2009. A method for removing contaminating protein during purification of human papillomavirus type 18 L1 protein from Saccharomyces cerevisiae. Arch. Pharm. Res.32, 1759–1766.PubMedCrossRefGoogle Scholar
  19. Kim, H.J., Lim, S.J., and Kwag, H.L. 2012. The choice of resin-bound ligand affects the structure and immunogenicity of column-purified human papillomavirus type 16 virus-like particles. PLoS ONE7, e35893.PubMedCrossRefGoogle Scholar
  20. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685.PubMedCrossRefGoogle Scholar
  21. Madrid-Marina, V., Torres-Poveda, K., Lopez-Toledo, G., and Garcia-Carranca, A. 2009. Advantages and disadvantages of current prophylactic vaccines against HPV. Arch. Med. Res.40, 471–477.PubMedCrossRefGoogle Scholar
  22. Matsukura, T. and Sugase, M. 1990. Molecular cloning of a novel human papillomarvirus (type 58) from an invasive cervical carcinoma. Virology177, 833–836.PubMedCrossRefGoogle Scholar
  23. National Cancer Institute. 2007. Women’s Health Report, Fiscal Years 2005–2006. NCI Women’s Health Report FY2005-2006.Google Scholar
  24. Nyari, T., Cseh, I., Woodward, M., Szollosi, J., Bak, M., and Deak, J. 2001. Screening for human papillomavirus infection in asymptomatic women in Hungary. Hum. Reprod.16, 2235–2237.PubMedCrossRefGoogle Scholar
  25. Nyari, T.A., Kalmar, L., Deak, J., Szollosi, J., Farkas, I., and Kovacs, L. 2004. Prevalence and risk factors of human papilloma virus infection in asymptomatic women in southeastern Hungary. Eur. J. Obstet. Gynecol. Reprod. Biol.115, 99–100.PubMedCrossRefGoogle Scholar
  26. Park, M.A., Kim, H.J., and Kim, H.-J. 2008. Optimum conditions for production and purification of human papillomavirus type 16 L1 protein from Saccharomyces cerevisiae. Protein Expr. Purif.59, 175–181.PubMedCrossRefGoogle Scholar
  27. Pastrana, D.V., Buck, C.B., Pang, Y.Y., Thompson, C.D., Castle, P.E., FitzGerald, P.C., Kruger Kjaer, S., Lowy, D.R., and Schiller, J.T. 2004. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology321, 205–216.PubMedCrossRefGoogle Scholar
  28. Pattenden, L.K., Middelberg, A.P., Niebert, M., and Lipin, D.I. 2005. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol.23, 523–529.PubMedCrossRefGoogle Scholar
  29. Schadlich, L., Senger, T., Kirschning, C.J., Muller, M., and Gissmann, L. 2009. Refining HPV 16 L1 purification from E. coli: reducing endotoxin contaminations and their impact on immunogenicity. Vaccine27, 1511–1522.PubMedCrossRefGoogle Scholar
  30. Stockmann, C., Scheidle, M., Dittrich, B., Merckelbach, A., Hehmann, G., Melmer, G., Klee, D., Buchs, J., Kang, H.A., and Gellissen, G. 2009. Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment. Microb. Cell Fact.8, 22.PubMedCrossRefGoogle Scholar
  31. Sun, J., Song, X., and Hu, S. 2008. Ginsenoside Rg1 and aluminum hydroxide synergistically promote immune responses to ovalbumin in BALB/c mice. Clin. Vaccine Immunol.15, 303–307.PubMedCrossRefGoogle Scholar
  32. Thones, N., Herreiner, A., Schadlich, L., Piuko, K., and Muller, M. 2008. A direct comparison of human papillomavirus type 16 L1 particles reveals a lower immunogenicity of capsomeres than viruslike particles with respect to the induced antibody response. J. Virol.82, 5472–5485.PubMedCrossRefGoogle Scholar
  33. Vicente, T., Roldao, A., Peixoto, C., Carrondo, M.J., and Alves, P.M. 2011. Large-scale production and purification of VLP-based vaccines. J. Invertebr. Pathol.107, S42–48.PubMedCrossRefGoogle Scholar
  34. Walboomers, J.M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A., Shah, K.V., Snijders, P.J., Peto, J., Meijer, C.J., and Munoz, N. 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol.189, 12–19.PubMedCrossRefGoogle Scholar
  35. Wheeler, C.M., Castellsague, X., Garland, S.M., Szarewski, A., Paavonen, J., Naud, P., Salmeron, J., Chow, S.N., Apter, D., Kitchener, H., andet al. 2012. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol.13, 100–110.PubMedCrossRefGoogle Scholar
  36. Woo, M.K., Hur, S.J., Park, S., and Kim, H.-J. 2007. Study of cell-mediated response in mice by HPV16 L1 virus-like particles expressed in Saccharomyces cerevisiae. J. Microbiol. Biotechnol.17, 1738–1741.PubMedGoogle Scholar
  37. Zhang, T., Xu, Y., Qiao, L., Wang, Y., Wu, X., Fan, D., Peng, Q., and Xu, X. 2010. Trivalent Human Papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types. Vaccine28, 3479–3487.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hye-Lim Kwag
    • 1
  • Hyoung Jin Kim
    • 1
  • Don Yong Chang
    • 1
  • Hong-Jin Kim
    • 1
  1. 1.College of PharmacyChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations