Journal of Microbiology

, Volume 50, Issue 4, pp 693–697 | Cite as

Biosynthetic pathway for poly(3-Hydroxypropionate) in recombinant Escherichia coli

  • Qi Wang
  • Changshui Liu
  • Mo Xian
  • Yongguang Zhang
  • Guang Zhao
Note

Abstract

Poly(3-hydroxypropionate) (P3HP) is a biodegradable and biocompatible thermoplastic. In this study, we engineered a P3HP biosynthetic pathway in recombinant Escherichia coli. The genes for malonyl-CoA reductase (mcr, from Chloroflexus aurantiacus), propionyl-CoA synthetase (prpE, from E. coli), and polyhydroxyalkanoate synthase (phaC1, from Ralstonia eutropha) were cloned and expressed in E. coli. The E. coli genes accABCD encoding acetyl-CoA carboxylase were used to channel the carbon into the P3HP pathway. Using glucose as a sole carbon source, the cell yield and P3HP content were 1.32 g/L and 0.98% (wt/wt [cell dry weight]), respectively. Although the yield is relatively low, our study shows the feasibility of engineering a P3HP biosynthetic pathway using a structurally unrelated carbon source in bacteria.

Keywords

poly(3-hydroxypropionate) malonyl-CoA reductase propionyl-coenzyme A synthetase polyhydroxyalkanoate synthase recombinant E. coli 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreeßen, B., Lange, A.B., Robenek, H., and Steinbüchel, A. 2010. Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl. Environ. Microbiol. 76, 622–626.PubMedCrossRefGoogle Scholar
  2. Andreeßen, B. and Steinbüchel, A. 2010. Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters. Appl. Environ. Microbiol. 76, 4919–4925.PubMedCrossRefGoogle Scholar
  3. Arai, Y., Cao, A., Yoshie, N., and Inoue, Y. 1999. Studies on comonomer compositional distribution and its effect on some physical properties of bacterial poly(3-hydroxybutyric acid-co-3-hydroxypropionic acid). Polym. Int. 48, 1219–1228.CrossRefGoogle Scholar
  4. Brandl, H., Gross, R.A., Lenz, R.W., and Fuller, R.C. 1988. Pseudomonas oleovorans as a source of poly(b-Hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol. 54, 1977–1982.PubMedGoogle Scholar
  5. Cao, Y.J., Jiang, X.L., Zhang, R.B., and Xian, M. 2011. Improved phloroglucinol production by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 91, 1545–1552.PubMedCrossRefGoogle Scholar
  6. Chen, G.Q. 2009. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 38, 2434–2446.PubMedCrossRefGoogle Scholar
  7. Clarke, D.M. and Bragg, P.D. 1985. Cloning and expression of the transhydrogenase gene of Escherichia coli. J. Bacteriol. 162, 367–373.PubMedGoogle Scholar
  8. Friedrich, B., Pohlmann, A., Fricke, W.F., Reinecke, F., Kusian, B., Liesegang, H., Cramm, R., Eitinger, T., Ewering, C., Potter, M., and et al. 2006. Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24, 1257–1262.PubMedCrossRefGoogle Scholar
  9. Fukui, T., Suzuki, M., Tsuge, T., and Nakamura, S. 2009. Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator. Biomacromolecules 10, 700–706.PubMedCrossRefGoogle Scholar
  10. Green, P.R., Kemper, J., Schechtman, L., Guo, L., Satkowski, M., Fiedler, S., Steinbüchel, A., and Rehm, B.H. 2002. Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid beta-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3, 208–213.PubMedCrossRefGoogle Scholar
  11. Gresham, T.L., Jansen, J.E., and Shaver, F.W. 1948. β-Proponlactone. I. Polymerization reactions. J. Am. Chem. Soc. 70, 998–999.CrossRefGoogle Scholar
  12. Horswill, A.R. and Escalante-Semerena, J.C. 1999. The prpE gene of Salmonella typhimurium LT2 encodes propionyl-CoA synthetase. Microbiology 145(Pt 6), 1381–1388.PubMedCrossRefGoogle Scholar
  13. Hugler, M., Menendez, C., Schagger, H., and Fuchs, G. 2002. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Bacteriol. 184, 2404–2410.PubMedCrossRefGoogle Scholar
  14. Kang, C.K., Lee, H.S., and Kim, J.H. 1993. Accumulation of PHA and its copolyesters by Methylobacterium sp. KCTC 0048. Biotechnol. Lett. 15, 1017–1020.Google Scholar
  15. Kroeger, J.K., Zarzycki, J., and Fuchs, G. 2011. A spectrophotometric assay for measuring acetyl-coenzyme A carboxylase. Anal. Biochem. 411, 100–105.PubMedCrossRefGoogle Scholar
  16. Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., and Witholt, B. 1988. Formation of polyesters by Pseudomonas oleovorans — Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 54, 2924–2932.PubMedGoogle Scholar
  17. Liu, Q., Luo, G., Zhou, X.R., and Chen, G.Q. 2011. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab. Eng. 13, 11–17.PubMedCrossRefGoogle Scholar
  18. Nakamura, S., Kunioka, M., and Doi, Y. 1991. Biosynthesis and characterization of bacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate). J. Macromol. Sci. Chem. A28, 15–24.Google Scholar
  19. Ostle, A.G. and Holt, J.G. 1982. Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl. Environ. Microbiol. 44, 238–241.PubMedGoogle Scholar
  20. Poelarends, G.J., Johnson, W.H., Jr., Murzin, A.G., and Whitman, C.P. 2003. Mechanistic characterization of a bacterial malonate semialdehyde decarboxylase: identification of a new activity on the tautomerase superfamily. J. Biol. Chem. 278, 48674–48683.PubMedCrossRefGoogle Scholar
  21. Rathnasingh, C., Raj, S.M., Lee, Y., Catherine, C., Ashok, S., and Park, S. 2012. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J. Biotechnol. 157, 633–640.PubMedCrossRefGoogle Scholar
  22. Steinbüchel, A. and Lutke-Eversloh, T. 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81–96.CrossRefGoogle Scholar
  23. Valentin, H.E., Mitsky, T.A., Mahadeo, D.A., Tran, M., and Gruys, K.J. 2000. Application of a propionyl coenzyme A synthetase for poly(3-hydroxypropionate-co-3-hydroxybutyrate) accumulation in recombinant Escherichia coli. Appl. Environ. Microbiol. 66, 5253–5258.PubMedCrossRefGoogle Scholar
  24. Wang, H.H., Li, X.T., and Chen, G.Q. 2009. Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. putida KT2442. Proc. Biochem. 44, 106–111.CrossRefGoogle Scholar
  25. Warnecke, T.E., Lynch, M.D., Karimpour-Fard, A., Sandoval, N., and Gill, R.T. 2008. A genomics approach to improve the analysis and design of strain selections. Metab. Eng. 10, 154–165.PubMedCrossRefGoogle Scholar
  26. Yamashita, M., Takemoto, Y., Ihara, E., and Yasuda, H. 1996. Organolanthanide-initiated living polymerizations of ɛ-caprolactone, δ-valerolactone, and β-propiolactone. Macromolecules 29, 1798–1806.CrossRefGoogle Scholar
  27. Zha, W., Rubin-Pitel, S.B., Shao, Z., and Zhao, H. 2009. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab. Eng. 11, 192–198.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qi Wang
    • 1
    • 2
  • Changshui Liu
    • 1
    • 2
  • Mo Xian
    • 1
  • Yongguang Zhang
    • 1
  • Guang Zhao
    • 1
  1. 1.Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoP. R. China
  2. 2.Graduate University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations