Advertisement

Journal of Microbiology

, Volume 50, Issue 5, pp 735–745 | Cite as

Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea

  • Jae-Hyung Ahn
  • In-Pyo Hong
  • Jeung-Im Bok
  • Byung-Yong Kim
  • Jaekyeong Song
  • Hang-Yeon WeonEmail author
Article

Abstract

The bacterial communities in the guts of the adults and larvae of the Asian honey bee Apis cerana and the European honey bee Apis mellifera were surveyed by pyrosequencing the 16S rRNA genes. Most of the gut bacterial 16S rRNA gene sequences were highly similar to the known honey bee-specific ones and affiliated with Pasteurellaceae or lactic acid bacteria (LAB). The numbers of operational taxonomic units (OTUs, defined at 97% similarity) were lower in the larval guts (6 or 9) than in the adult guts (18 or 20), and the frequencies of Pasteurellaceae-related OTUs were higher in the larval guts while those of LAB-related OTUs in the adult guts. The frequencies of Lactococcus, Bartonella, Spiroplasma, Enterobacteriaceae, and Flavobacteriaceae-related OTUs were much higher in A. cerana guts while Bifidobacterium and Lachnospiraceae-related OTUs were more abundant in A. mellfera guts. The bacterial community structures in the midguts and hindguts of the adult honey bees were not different for A. cerana, but significantly different for A. mellifera. The above results substantiated the previous observation that honey bee guts are dominated by several specific bacterial groups, and also showed that the relative abundances of OTUs could be markedly changed depending on the developmental stage, the location within the gut, and the honey bee species. The possibility of using the gut bacterial community as an indicator of honey bee health was discussed.

Keywords

honey bee gut bacterial community 16S rRNA gene pyrosequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2012_2188_MOESM1_ESM.pdf (103 kb)
Supplementary material, approximately 103 KB.

References

  1. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25, 3389–3402.PubMedCrossRefGoogle Scholar
  2. Armougom, F., Henry, M., Vialettes, B., Raccah, D., and Raoult, D. 2009. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS ONE4, e7125.PubMedCrossRefGoogle Scholar
  3. Babendreier, D., Joller, D., Romeis, J., Bigler, F., and Widmer, F. 2007. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol.59, 600–610.PubMedCrossRefGoogle Scholar
  4. Bauer, S., Tholen, A., Overmann, J., and Brune, A. 2000. Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques. Arch. Microbiol.173, 126–137.PubMedCrossRefGoogle Scholar
  5. Bernardet, J.F. and Nakagawa, Y. 2006. An introduction to the family Flavobacteriaceae, pp. 455–480. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The Prokaryotes, Springer, New York, N.Y., USA.CrossRefGoogle Scholar
  6. Biavati, B. and Mattarelli, P. 2006. The Family Bifidobacteriaceae, pp. 322–382. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds.), The Prokaryotes, Springer, New York, N.Y., USA.CrossRefGoogle Scholar
  7. Bové, J.M. 1997. Spiroplasmas: Infectious agents of plants, arthropods and vertebrates. Wien. Klin. Wochenschr.109, 604–612.PubMedGoogle Scholar
  8. Brown, D.R. 2010. Phylum XVI. Tenericutes, pp. 567–723. In Krieg, N.R., Staley, J.T., Brown, D.R., Hedlund, B.P., Paster, B.J., Ward, N.L., Ludwig, W., and Whitman, W.B. (eds.), Bergey’s Manual of Systematic Bacteriology, Springer, New York, N.Y., USA.Google Scholar
  9. Chandler, J.A., Morgan Lang, J., Bhatnagar, S., Eisen, J.A., and Kopp, A. 2011. Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genet.7, e1002272.PubMedCrossRefGoogle Scholar
  10. Chun, J., Kim, K., Lee, J.H., and Choi, Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX titanium pyrosequencer. BMC Microbiol.10, 101.PubMedCrossRefGoogle Scholar
  11. Clark, T.B., Whitcomb, R.F., Tully, J.G., Mouches, C., Saillard, C., Bové, J.M., Wroblewsk, H., Carle, P., Rose, D.L., Henegar, R.B., andet al. 1985. Spiroplasma melliferum, a new species from the honeybee (Apis mellifera). Int. J. Syst. Bacteriol.35, 296–308.CrossRefGoogle Scholar
  12. Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A., Quan, P.L., Briese, T., Hornig, M., Geiser, D.M., andet al. 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science318, 283–287.PubMedCrossRefGoogle Scholar
  13. Crotti, E., Rizzi, A., Chouaia, B., Ricci, I., Favia, G., Alma, A., Sacchi, L., Bourtzis, K., Mandrioli, M., Cherif, A., andet al. 2010. Acetic acid bacteria, newly emerging symbionts of insects. Appl. Environ. Microbiol.76, 6963–6970.PubMedCrossRefGoogle Scholar
  14. Dillon, R.J. and Dillon, V.M. 2004. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol.49, 71–92.PubMedCrossRefGoogle Scholar
  15. Disayathanoowat, T., Young, J.P.W., Helgason, T., and Chantawannakul, P. 2012. T-RFLP analysis of bacterial communities in the midguts of Apis mellifera and Apis cerana honey bees in Thailand. FEMS Microbiol. Ecol.79, 273–281.PubMedCrossRefGoogle Scholar
  16. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics26, 2460–2461.PubMedCrossRefGoogle Scholar
  17. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27, 2194–2200.PubMedCrossRefGoogle Scholar
  18. Edwards, C.G., Haag, K.M., Collins, M.D., Hutson, R.A., and Huang, Y.C. 1998. Lactobacillus kunkeei sp. nov.: a spoilage organism associated with grape juice fermentations. J. Appl. Microbiol.84, 698–702.PubMedCrossRefGoogle Scholar
  19. Evans, J.D. and Schwarz, R.S. 2011. Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol.19, 614–620.PubMedCrossRefGoogle Scholar
  20. Forsgren, E., Olofsson, T., Váasquez, A., and Fries, I. 2010. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie41, 99–108.CrossRefGoogle Scholar
  21. Garrity, G.M., Bell, J.A., and Lilburn, T. 2005. Order XIV. Pasteurellales ord. nov., pp. 850–912. In Brenner, D.J., Krieg, N.R., Staley, J.T., Garrity, G.M., Boone, D.R., Vos, P., Goodfellow, M., Rainey, F.A., and Schleifer, K.H. (eds.), Bergey’s Manual of Systematic Bacteriology, Springer, USA.CrossRefGoogle Scholar
  22. Gilles, A., Meglecz, E., Pech, N., Ferreira, S., Malausa, T., and Martin, J.F. 2011. Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics12, 245.PubMedCrossRefGoogle Scholar
  23. Gilliam, M. 1997. Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol. Lett.157, 219–219.Google Scholar
  24. Good, I.J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika40, 237–264.Google Scholar
  25. Graber, J.R. and Breznak, J.A. 2005. Folate cross-feeding supports symbiotic homoacetogenic spirochetes. Appl. Environ. Microbiol.71, 1883–1889.PubMedCrossRefGoogle Scholar
  26. Hamady, M., Lozupone, C., and Knight, R. 2009. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J.4, 17–27.PubMedCrossRefGoogle Scholar
  27. Human, H. and Nicolson, S.W. 2006. Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry67, 1486–1492.PubMedCrossRefGoogle Scholar
  28. Itoi, S., Abe, T., Washio, S., Ikuno, E., Kanomata, Y., and Sugita, H. 2008. Isolation of halotolerant Lactococcus lactis subsp. lactis from intestinal tract of coastal fish. Int. J. Food Microbiol.121, 116–121.PubMedCrossRefGoogle Scholar
  29. Itoi, S., Yuasa, K., Washio, S., Abe, T., Ikuno, E., and Sugita, H. 2009. Phenotypic variation in Lactococcus lactis subsp. lactis isolates derived from intestinal tracts of marine and freshwater fish. J. Appl. Bacteriol.107, 867–874.CrossRefGoogle Scholar
  30. Jeyaprakash, A., Hoy, M.A., and Allsopp, M.H. 2003. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J. Inverterbr. Pathol.84, 96–103.CrossRefGoogle Scholar
  31. Kersters, K., Lisdiyanti, P., Komagata, K., and Swings, J. 2006. The Family Acetobacteraceae: The Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia, pp. 163–200. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds.), The Prokaryotes, Springer, New York, N.Y., USA.CrossRefGoogle Scholar
  32. Klijn, N., Weerkamp, A.H., and de Vos, W.M. 1995. Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Appl. Environ. Microbiol.61, 788–792.PubMedGoogle Scholar
  33. Koch, H. and Schmid-Hempel, P. 2011a. Bacterial communities in central European bumblebees: Low diversity and high specificity. Microbiol. Ecol.62, 121–133.CrossRefGoogle Scholar
  34. Koch, H. and Schmid-Hempel, P. 2011b. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. USA108, 19288–19292.PubMedCrossRefGoogle Scholar
  35. Korczak, B., Christensen, H., Emler, S., Frey, J., and Kuhnert, P. 2004. Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int. J. Syst. Evol. Microbiol.54, 1393–1399.PubMedCrossRefGoogle Scholar
  36. Lee, M., Hong, I., Choi, Y., Kim, N., Kim, H., Lee, K., and Lee, M. 2010. Present status of Korean beekeeping industry. Korean J. Apiculture25, 137–144.Google Scholar
  37. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M., and Schleifer, K.H. 1998. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis19, 554–568.PubMedCrossRefGoogle Scholar
  38. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., andet al. 2004. ARB: a software environment for sequence data. Nucleic Acids Res.32, 1363–1371.PubMedCrossRefGoogle Scholar
  39. Martinson, V.G., Danforth, B.N., Minckley, R.L., Rueppell, O., Tingek, S., and Moran, N.A. 2011. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol.20, 619–628.PubMedCrossRefGoogle Scholar
  40. Martinson, V.G., Moy, J., and Moran, N.A. 2012. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol.78, 2830–2840.PubMedCrossRefGoogle Scholar
  41. Minnick, M. and Anderson, B. 2006. The Genus Bartonella, pp. 467–492. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds.), The Prokaryotes, Springer, New York, N.Y., USA.CrossRefGoogle Scholar
  42. Mohr, K.I. and Tebbe, C.C. 2006. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ. Microbiol.8, 258–272.PubMedCrossRefGoogle Scholar
  43. Morales-Jiménez, J., Zúñiga, G., Villa-Tanaca, L., and Hernández-Rodríguez, C. 2009. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microbiol. Ecol.58, 879–891.CrossRefGoogle Scholar
  44. Mouches, C., Bové, J.M., and Albisetti, J. 1984. Pathogenicity of Spiroplasma apis and other spiroplasmas for honey-bees in southwestern France. Ann. Inst. Pasteur Mic.135 A, 151–155.CrossRefGoogle Scholar
  45. Nam, Y.-D., Jung, M.-J., Roh, S.W., Kim, M.-S., and Bae, J.-W. 2011. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS ONE6, e22109.PubMedCrossRefGoogle Scholar
  46. Olofsson, T.C. and Vásquez, A. 2008. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr. Microbiol.57, 356–363.PubMedCrossRefGoogle Scholar
  47. Ondov, B., Bergman, N., and Phillippy, A. 2011. Interactive metagenomic visualization in a web browser. BMC Bioinfor.12, 385.CrossRefGoogle Scholar
  48. Pérez, T., Balcázar, J.L., Peix, A., Valverde, A., Velázquez, E., de Blas, I., and Ruiz-Zarzuela, I. 2011. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int. J. Syst. Evol. Microbiol.61, 1894–1898.PubMedCrossRefGoogle Scholar
  49. Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., and Kunin, W.E. 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol.25, 345–353.PubMedCrossRefGoogle Scholar
  50. Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glöckner, F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res.35, 7188–7196.PubMedCrossRefGoogle Scholar
  51. Quince, C., Lanzen, A., Davenport, R., and Turnbaugh, P. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinform.12, 38.CrossRefGoogle Scholar
  52. Rainey, F.A. 2009. Family V. Lachnospiraceae fam. nov. pp. 921–268. Inde Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H., and Whitman, W.B. (eds.), Bergey’s Manual of Systematic Bacteriology, Springer, New York, N.Y., USA.Google Scholar
  53. Rajilić-Stojanović, M., Smidt, H., and De Vos, W.M. 2007. Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol.9, 2125–2136.PubMedCrossRefGoogle Scholar
  54. Runckel, C., Flenniken, M.L., Engel, J.C., Ruby, J.G., Ganem, D., Andino, R., and DeRisi, J.L. 2011. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE6, e20656.PubMedCrossRefGoogle Scholar
  55. Schloss, P.D., Gevers, D., and Westcott, S.L. 2011. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE6, e27310.PubMedCrossRefGoogle Scholar
  56. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., andet al. 2009. Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol.75, 7537–7541.PubMedCrossRefGoogle Scholar
  57. Schultz, J.E. and Breznak, J.A. 1978. Heterotrophic bacteria pres ent in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl. Environ. Microbiol.35, 930–936.PubMedGoogle Scholar
  58. Tamames, J., Abellan, J., Pignatelli, M., Camacho, A., and Moya, A. 2010. Environmental distribution of prokaryotic taxa. BMC Microbiol.10, 85.PubMedCrossRefGoogle Scholar
  59. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28, 2731–2739.PubMedCrossRefGoogle Scholar
  60. Teuber, M. and Geis, A. 2006. The genus Lactococcus, pp. 205–228. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The Prokaryotes, Springer, New York, N.Y., USA.CrossRefGoogle Scholar
  61. Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., andet al. 2008. A core gut microbiome in obese and lean twins. Nature457, 480–484.PubMedCrossRefGoogle Scholar
  62. Vasquez, A. and Olofsson, T.C. 2009. The lactic acid bacteria involved in the production of bee pollen and bee bread. J. Apic. Res.48, 189–195.CrossRefGoogle Scholar
  63. Volkmann, M., Skiebe, E., Kerrinnes, T., Faber, F., Lepka, D., Pfeifer, Y., Holland, G., Bannert, N., and Wilharm, G. 2010. Orbus hercynius gen. nov., sp. nov., isolated from faeces of wild boar, is most closely related to members of the orders’ Enterobacteriales’ and Pasteurellales. Int. J. Syst. Evol. Microbiol.60, 2601–2605.Google Scholar
  64. Winston, M.L. 1987. The biology of the honey bee. Harvard University Press, Cambridge, MA, USA.Google Scholar
  65. Yoshiyama, M. and Kimura, K. 2009. Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J. Invertebr. Pathol.102, 91–96.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jae-Hyung Ahn
    • 1
  • In-Pyo Hong
    • 1
  • Jeung-Im Bok
    • 1
  • Byung-Yong Kim
    • 1
  • Jaekyeong Song
    • 1
  • Hang-Yeon Weon
    • 1
    Email author
  1. 1.National Academy of Agricultural ScienceRural Development AdministrationSuwonRepublic of Korea

Personalised recommendations