The Journal of Microbiology

, Volume 50, Issue 2, pp 293–300 | Cite as

Antiviral activities of flavonoids isolated from the bark of Rhus verniciflua stokes against fish pathogenic viruses In Vitro

Articles

Abstract

An 80% methanolic extract of Rhus verniciflua Stokes bark showed significant anti-viral activity against fish pathogenic infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) in a cell-based assay measuring virus-induced cytopathic effect (CPE). Activity-guided fractionation and isolation for the 80% methanolic extract of R. verniciflua yielded the most active ethyl acetate fraction, and methyl gallate (1) and four flavonoids: fustin (2), fisetin (3), butin (4) and sulfuretin (5). Among them, fisetin (3) exhibited high antiviral activities against both IHNV and VHSV showing EC50 values of 27.1 and 33.3 μM with selective indices (SI = CC50/EC50) more than 15, respectively. Fustin (2) and sulfuretin (5) displayed significant antiviral activities showing EC50 values of 91.2–197.3 μM against IHNV and VHSV. In addition, the antiviral activity of fisetin against IHNV and VHSV occurred up to 5 hr post-infection and was not associated with direct virucidal effects in a timed addition study using a plaque reduction assay. These results suggested that the bark of R. verniciflua and isolated flavonoids have significant anti-viral activity against IHNV and VHSV, and also have potential to be used as anti-viral therapeutics against fish viral diseases.

Keywords

Rhus verniciflua anti-viral activity infectious hematopoietic necrosis virus viral hemorrhagic septicemia virus flavonoids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammayappan, A. and Vakharia, V.N. 2011. Nonvirion protein of novirhabdovirus suppresse apoptosis at the early stage of virus infection. J. Virol. 85, 8393–8402.PubMedCrossRefGoogle Scholar
  2. Arima, H., Ashida, H., and Danno, G. 2002. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci. Biotechnol. Biochem. 66, 1009–1014.PubMedCrossRefGoogle Scholar
  3. Biering, E., Villoing, S., Sommerset, I., and Christie, K.E. 2005. Update on viral vaccines for fish. Dev. Biol. 121, 97–113.Google Scholar
  4. Chiou, P.P., Kim, C.H., Ormonde, P., and Leong, J.C. 2000. Infectious hematopoietic necrosis virus matrix protein inhibits host-directed gene expression and induces morphological changes of apoptosis in cell cultures. J. Virol. 74, 7619–7627.PubMedCrossRefGoogle Scholar
  5. Choi, J., Yoon, B.J., Han, Y.N., Lee, K.T., Ha, J., and Jung, H.J. 2003. Antirheumatoid arthritis effect of Rhus verniciflua and of the active component, sulfuretin. Planta Med. 69, 899–904.PubMedCrossRefGoogle Scholar
  6. Chu, S.-C., Hsieh, Y.-S., and Lin, J.-Y. 1992. Inhibitory effects of flavonoids on moloney murine leukemia virus reverse transcriptase activity. J. Nat. Prod. 55, 179–183.PubMedCrossRefGoogle Scholar
  7. Gomez-Casado, E., Estepa, A., and Coll, J.M. 2011. A comparative review on European-farmed finfish RNA viruses and their vaccines. Vaccine 29, 2657–2671.PubMedCrossRefGoogle Scholar
  8. Hill, B. 1992. Impact of viral diseases on salmonid fish in Europe. In Kimura, T. (ed.), Proceedings of the OJI international symposium on salmonid diseases-1992. Hokkaido University Press, Sapporo, Japan.Google Scholar
  9. Hudson, J.B., Graham, E.A., and Simpson, M.F. 1988. The efficacy of amantadine and other antiviral compounds against two salmonid viruses in vitro. Antiviral Res. 9, 379–385.PubMedCrossRefGoogle Scholar
  10. Inouye, Y., Yamaguchi, K., Take, Y., and Nakamura, S. 1989. Inhibition of avian myeloblastosis virus reverse transcriptase by flavones and isoflavones. J. Antibiot. 42, 1523–1525.PubMedCrossRefGoogle Scholar
  11. Jang, H.S., Kook, S.H., Son, Y.O., Kim, J.G., Jeon, Y.M., Jang, Y.S., Choi, K.H., Kim, J., Han, S.K., Lee, K.Y., and et al. 2005. Flavonoids purified from Rhus verniciflua Stokes actively inhibit cell growth and induce apoptosis in human osteosarcoma cells. Biochim. Biophys. Acta 1726, 309–316.PubMedCrossRefGoogle Scholar
  12. Jashes, M., Gonzalez, M., Lopez-Lastra, M., De Clercq, E., and Sandino, A. 1996. Inhibitors of infectious pancreatic necrosis virus (IPNV) replication. Antiviral Res. 29, 309–312.PubMedCrossRefGoogle Scholar
  13. Jason, D.G. and Cameron, C.E. 2006. Mechanisms of action of ribavirin against distinct viruses. Rev. Med. Virol. 16, 37–48.CrossRefGoogle Scholar
  14. Jeon, W.K., Kim, J.H., Lee, H.W., Ko, B.S., and Kim, H.K. 2003. Effects of Rhus verniciflua Stokes (RVS) extract on diet-induced obesity in C57BL/6 mouse. Kor. J. Pharmacogn. 34, 339–343.Google Scholar
  15. Jeon, W.K., Lee, J.H., Kim, H.K., Lee, A.Y., Lee, S.O., Kim, Y.S., Ryu, S.Y., Kim, S.Y., Lee, Y.J., and Ko, B.S. 2006. Anti-platelet effects of bioactive compounds isolated from the bark of Rhus verniciflua Stokes. J. Ethnopharmacol. 106, 62–69.PubMedCrossRefGoogle Scholar
  16. Kamei, Y. and Aoki, M. 2007. A chlrorophyll c2 analaogue from the marine brown alga Eisenia bicylis inactivates the infectious hematopoietic necrosis virus, a fish rhabovirus. Arch. Virol. 152, 861–869.PubMedCrossRefGoogle Scholar
  17. Kane, C.J., Menna, J.H., Sung, C.C., and Yeh, Y.C. 1988. Methyl gallate, methyl-3,4,5-trihydroxybenzoate, is a potent and highly specific inhibitor of herpes simplex virus in vitro. II. Antiviral activity of methyl gallate and its derivatives. Biosci. Rep. 8, 95–102.PubMedCrossRefGoogle Scholar
  18. Kang, S.Y. 2005. The antimicrobial compound of Rhus verniciflua barks against fish pathogenic Gram-negative bacteria, Edwardsiella tarda and Vibrio anguillarum. J. Fish Pathol. 18, 227–237.Google Scholar
  19. Kang, S.Y., Kim, S.R., and Oh, M.-J. 2008. In vitro antiviral activities of Korean Marine algae extracts against fish pathogenic infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. Food Sci. Biotechnol. 17, 1074–1078.Google Scholar
  20. Kashiwada, Y., Nonaka, G., and Nishioka, I. 1986. Tannins and related compounds. XLVIII. Rhubarb. (7). Isolation and characterization of new dimeric and trimeric procyanidins. Chem. Pharm. Bull. 34, 4083–4091.PubMedCrossRefGoogle Scholar
  21. Kim, T. 2009. Wild flowers and resources plants in Korea (Vol. III), pp. 172–173. Seoul National University Press, Seoul, Republic of Korea.Google Scholar
  22. Kim, M.J., Choi, W.C., and Barshinikov, A.M. 2002. Anticancer and antioxidant activity of allergen-removed extract in Rhus verniciflua Stokes. Korean J. Med. Crop. Sci. 10, 288–293.Google Scholar
  23. Kim, S.Y., Kim, S.R., Oh, M.J., Jung, S.J., and Kang, S.Y. 2011. In vitro antiviral activity of red alga, Polysiphonia morrowii extract and its bromophenols against fish pathogenic infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. J. Microbiol. 49, 102–106.PubMedCrossRefGoogle Scholar
  24. Kim, J.S., Kwon, Y.S., Chun, W.J., Kim, T.Y., Sun, J., Yu, C.Y., and Kim, M.J. 2010a. Rhus verniciflua Stokes flavonoids extracts have anti-oxidant, anti-microbial, and alfa-glucosidase inhibitory effect. Food Chem. 120, 539–543.CrossRefGoogle Scholar
  25. Kim, Y., Narayanan, S., and Chang, K.O. 2010b. Inhibition of influenza virus replication by plant-derived isoquecetin. Antiviral Res. 88, 227–235.PubMedCrossRefGoogle Scholar
  26. Konig, B. and Dustmann, J.H. 1985. The caffeoylics as a new family of natural antiviral compounds. Naturwissenschaften 72, 659–661.PubMedCrossRefGoogle Scholar
  27. Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R., and Popov, S. 1999. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 64, 235–240.PubMedCrossRefGoogle Scholar
  28. Lee, J.H., Lee, H., Lee, H.J., Choi, W.C., Yoon, S.W., and Ko, S.G. 2009. Rhus verniciflua Stokes prevents cisplatin-induced cytotoxicity and reactive oxygen species production in MDCK-I renal cells and intact mice. Phytomedicine 16, 188–197.PubMedCrossRefGoogle Scholar
  29. Lee, J.C., Lim, K.T., and Jang, Y.S. 2002. Identification of Rhus verniciflua Stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Biochim. Biophys. Acta 1570, 181–191.PubMedCrossRefGoogle Scholar
  30. Liu, A.-L., Wang, H.-D., Lee, S.M., Wang, Y.T., and Du, G.H. 2008. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem. 16, 7141–7147.PubMedCrossRefGoogle Scholar
  31. Lyu, S.Y., Rhim, J.Y., and Park, W.B. 2005. Antiherpetic activities of flavonoids against herpex simplex virus type 1 and type 2 in vitro. Arch. Pharm. Res. 28, 1293–1301.PubMedCrossRefGoogle Scholar
  32. Malhotra, B., Onyilagha, J.C., Bohm, B.A., Towers, G.H.N., James, D., Harborne, J.B., and French, C.J. 1996. Inhibition of tomato ringspot virus by flavonoids. Phytochemisty 43, 1271–1276.CrossRefGoogle Scholar
  33. Mercader, A.G. and Pomilio, A.B. 2010. QSAR study of flavonoids and bioflavonoids as influenza H1N1 virus neuraminidase inhibitors. Eur. J. Med. Chem. 45, 1724–1730.PubMedCrossRefGoogle Scholar
  34. Modak, B., Sandino, A.M., Arata, L., Cardenas-Jiron, G., and Torres, R. 2010. Inhibitory effect of aromatic geranyl derivatives isolated from Heliotropium filifolium on infectious pancreatic necrosis virus replication. Vet. Microbiol. 141, 53–58.PubMedCrossRefGoogle Scholar
  35. Naithani, R., Huma, L.C., Holland, L.E., Shukla, D., McCormick, D.L., Mehta, R.G., and Moriarty, R.M. 2008. Antiviral activity of phytochemicals: a comprehensive review. Mini. Rev. Med. Chem. 8, 1106–1133.PubMedCrossRefGoogle Scholar
  36. Nam, K.W., Chang, I.M., Choi, J.S., Hwang, K.J., and Ma, W. 1996. Antiviral effects of natural products on the inhibition of hepatitis B virus DNA replication in 2.2.15 cell culture system. Nat. Prod. Sci. 2, 130–136.Google Scholar
  37. Olivero-Verbel, J. and Pacheo-Londono, L. 2002. Structure-activity relationships for the anti-HIV activity of flavonoids. J. Chem. Inf. Comput. Sci. 42, 1242–1246.Google Scholar
  38. Park, K.-Y., Jung, G.-O., Lee, K.-T., Choi, J., Choi, M.-Y., Kim, G.-T., Jung, H.-Ju., and Park, H.-J. 2004. Antimutagenic activity of flavonoids from the heartwood of Rhus verniciflua. J. Ethnopharmacol. 90, 73–79.PubMedCrossRefGoogle Scholar
  39. Park, H.J., Kwon, S.H., Kim, G.T., Lee, K.T., Choi, J.H., Choi, J.W., and Park, K.Y. 2000. Physicochemical and biological characteristics of flavonoids isolated from the heartwood of Rhus verniciflua. Kor. J. Pharmacogn. 31, 345–350.Google Scholar
  40. Park, B.C., Lee, Y.S., Park, H.J., Kwak, M.K., Yoo, B.G., Kim, J.Y., and Kim, J.A. 2007. Protective effects of fustin, a flavonoid from Rhus verniciflua Stokes, on 6-hydroxydopamine-induced neuronal cell death. Exp. Mol. Med. 39, 316–326.PubMedGoogle Scholar
  41. Prachayasittikul, S., Buraparuangsang, P., Worachartcheewan, A., Isarankura-Na-Aqydhya, C., Ruchirawat, S., and Prachayasittikul, V. 2008. Antimicrobial and antioxidative activities of bioactive constituents from Hydnophytum formicarum Jack. Molecules 13, 904–921.PubMedCrossRefGoogle Scholar
  42. Thompson, K.D. 1998. Antiviral activity of Viracea against acyclovir susceptible and acyclovir resistant strains of herpes simplex virus. Antiviral Res. 39, 55–61.PubMedCrossRefGoogle Scholar
  43. Walker, P.J. and Winton, J.R. 2010. Emerging viral diseases of fish and shrimp. Vet. Res. 41, 51–74.PubMedCrossRefGoogle Scholar
  44. Wolf, K. 1988. Infectious hematopoietic necrosis and infectious pancreatic necrosis, pp. 83–157. In Wolf, K. (ed.), Fish viruses and fish viral diseases-1988. Cornell University Press, Ithaca, NY, USA.Google Scholar
  45. Ying, T.H., Yang, S.F., Tsai, S.J., Hsieh, S.C., Huang, Y.C., Bau, D.T., and Hsieh, Y.H. 2012. Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway. Arch. Toxicol. 86, 263–273.PubMedCrossRefGoogle Scholar
  46. Yuan, C.H., Filippova, M., Tungteakkhun, S.S., Duerksen-Hughes, P.J., and Krstenansky, J.L. 2012. Small molecule inhibitors of the HPV16-E6 interaction with caspase 8. Bioorg. Med. Chem. Lett. 22, 2125–2129.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Aqualife MedicineChonnam National UniversityYeosuRepublic of Korea

Personalised recommendations