Advertisement

Journal of Microbiology

, Volume 50, Issue 3, pp 478–488 | Cite as

Evaluation of the efficacy of a pre-pandemic H5N1 vaccine (MG1109) in mouse and ferret models

  • Min-Suk Song
  • Ho-Jin Moon
  • Hyeok-il Kwon
  • Philippe Noriel Q. Pascua
  • Jun Han Lee
  • Yun Hee Baek
  • Kyu-Jin Woo
  • Juhee Choi
  • Sangho Lee
  • Hyunseung Yoo
  • Ingyeong Oh
  • Yeup Yoon
  • Jong-Bok Rho
  • Moon-Hee Sung
  • Seung-Pyo Hong
  • Chul-Joong Kim
  • Young Ki ChoiEmail author
Articles

Abstract

The threat of a highly pathogenic avian influenza (HPAI) H5N1 virus causing the next pandemic remains a major concern. In this study, we evaluated the immunogenicity and efficacy of an inactivated whole-virus H5N1 pre-pandemic vaccine (MG1109) formulated by Green Cross Co., Ltd containing the hemagglutinin (HA) and neuraminidase (NA) genes of the clade 1 A/Vietnam/1194/04 virus in the backbone of A/Puerto Rico/8/34 (RgVietNam/04xPR8/34). Administration of the MG1109 vaccine (2-doses) in mice and ferrets elicited high HI and SN titers in a dose-dependent manner against the homologous (RgVietNam/04xPR8/34) and various heterologous H5N1 strains, (RgKor/W149/06xPR8/34, RgCambodia/04xPR8/34, RgGuangxi/05xPR8/34), including a heterosubtypic H5N2 (A/Aquatic bird/orea/W81/05) virus. However, efficient cross-reactivity was not observed against heterosubtypic H9N2 (A/Ck/Korea/H0802/08) and H1N1 (PR/8/34) viruses. Mice immunized with 1.9 μg HA/dose of MG1109 were completely protected from lethal challenge with heterologous wild-type HPAI H5N1 A/EM/Korea/W149/06 (clade 2.2) and mouse-adapted H5N2 viruses. Furthermore, ferrets administered at least 3.8 μg HA/dose efficiently suppressed virus growth in the upper respiratory tract and lungs. Vaccinated mice and ferrets also demonstrated attenuation of clinical disease signs and limited virus spread to other organs. Thus, this vaccine provided immunogenic responses in mouse and ferret models even against challenge with heterologous HPAI H5N1 and H5N2 viruses. Since the specific strain of HPAI H5N1 virus that would potentially cause the next outbreak is unknown, pre-pandemic vaccine preparation that could provide cross-protection against various H5 strains could be a useful approach in the selection of promising candidate vaccines in the future.

Keywords

HPAI H5N1 pre-pandemic vaccine cross-reactivity ferrets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baras, B., Stittelaar, K.J., Simon, J.H., Thoolen, R.J., Mossman, S.P., Pistoor, F.H., van Amerongen, G., Wettendorff, M.A., Hanon, E., and Osterhaus, A.D. 2008. Cross-protection against lethal H5N1 challenge in ferrets with an adjuvanted pandemic influenza vaccine. PLoS ONE 3, e1401.PubMedCrossRefGoogle Scholar
  2. Benne, C.A., Harmsen, M., De Jong, J.C., and Kraaijeveld, C.A. 1994. Neutralization enzyme immunoassay for influenza virus. J. Clin. Microbiol. 32, 987–990.PubMedGoogle Scholar
  3. Bodewes, R., Kreijtz, J.H., van Amerongen, G., Geelhoed-Mieras, M.M., Verburgh, R.J., Heldens, J.G., Bedwell, J., van den Brand, J.M., Kuiken, T., van Baalen, C.A., and et al. 2010. A single immunization with CoVaccine HT-adjuvanted H5N1 influenza virus vaccine induces protective cellular and humoral immune responses in ferrets. J. Virol. 84, 7943–7952.PubMedCrossRefGoogle Scholar
  4. Chin, P.S., Hoffmann, E., Webby, R., Webster, R.G., Guan, Y., Peiris, M., and Shortridge, K.F. 2002. Molecular evolution of H6 influenza viruses from poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry. J. Virol. 76, 507–516.PubMedCrossRefGoogle Scholar
  5. Choi, Y.K., Nguyen, T.D., Ozaki, H., Webby, R.J., Puthavathana, P., Buranathal, C., Chaisingh, A., Auewarakul, P., Hanh, N.T., Ma, S.K., and et al. 2005. Studies of H5N1 influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004. J. Virol. 79, 10821–10825.PubMedCrossRefGoogle Scholar
  6. Clements, C.J. and Griffiths, E. 2002. The global impact of vaccines containing aluminium adjuvants. Vaccine 20, S24–S33.PubMedCrossRefGoogle Scholar
  7. De, B.P., Joannis, T.M., Lombin, L.H., Shittu, I., Beato, M.S., Rebonato, V., Cattoli, G., and Capua, I. 2007. Field and laboratory findings of the first incursion of the Asian H5N1 highly pathogenic avian influenza virus in Africa. Avian Pathol. 36, 115–117.CrossRefGoogle Scholar
  8. Gherardi, R.K., Coquet, M., Cherin, P., Belec, L., Moretto, P., Dreyfus, P.A., Pellissier, J.F., Chariot, P., and Authier, F.J. 2001. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain 124, 1821–1831.PubMedCrossRefGoogle Scholar
  9. Govorkova, E.A., Webby, R.J., Humberd, J., Seiler, J.P., and Webster, R.G. 2006. Immunization with reverse-genetics-produced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge. J. Infect. Dis. 194, 159–167.PubMedCrossRefGoogle Scholar
  10. Hampson, A.W. 2006. Ferrets and the challenges of H5N1 vaccine formulation. J. Infect. Dis. 194, 143–145.PubMedCrossRefGoogle Scholar
  11. Harada, Y., Ninomiya-Mori, A., Takahashi, Y., Shirakura, M., Kishida, N., Kageyama, T., Tada, Y., Tashiro, M., and Odagiri, T. 2011. Inactivated and adjuvanted whole-virion clade 2.3.4 H5N1 pre-pandemic influenza vaccine possesses broad protective efficacy against infection by heterologous clades of highly pathogenic H5N1 avian influenza virus in mice. Vaccine 29, 8330–8337.PubMedCrossRefGoogle Scholar
  12. Hoffmann, E., Krauss, S., Perez, D., Webby, R., and Webster, R.G. 2002. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20, 3165–3170.PubMedCrossRefGoogle Scholar
  13. Horimoto, T., Takada, A., Fujii, K., Goto, H., Hatta, M., Watanabe, S., Iwatsuki-Horimoto, K., Ito, M., Tagawa-Sakai, Y., Yamada, S., and et al. 2006. The development and characterization of H5 influenza virus vaccines derived from a 2003 human isolate. Vaccine 24, 3669–3676.PubMedCrossRefGoogle Scholar
  14. Isoda, N., Sakoda, Y., Kishida, N., Soda, K., Sakabe, S., Sakamoto, R., Imamura, T., Sakaguchi, M., Sasaki, T., Kokumai, N., and et al. 2008. Potency of an inactivated avian influenza vaccine prepared from a non-pathogenic H5N1 reassortant virus generated between isolates from migratory ducks in Asia. Arch. Virol. 153, 1685–1692.PubMedCrossRefGoogle Scholar
  15. Lee, Y.J., Choi, Y.K., Kim, Y.J., Song, M.S., Jeong, O.M., Lee, E.K., Jeon, W.J., Jeong, W., Joh, S.J., Choi, K.S., and et al. 2008. Highly pathogenic avian influenza virus (H5N1) in domestic poultry and relationship with migratory birds, South Korea. Emerg. Infect. Dis. 14, 487–490.PubMedCrossRefGoogle Scholar
  16. Leroux-Roels, I., Bernhard, R., Gerard, P., Drame, M., Hanon, E., and Leroux-Roels, G. 2008. Broad Clade 2 cross-reactive immunity induced by an adjuvanted clade 1 rH5N1 pandemic influenza vaccine. PLoS ONE 3, e1665.PubMedCrossRefGoogle Scholar
  17. Lindblad, E.B. 2004. Aluminium compounds for use in vaccines. Immunol. Cell Biol. 82, 497–505.PubMedCrossRefGoogle Scholar
  18. Lipatov, A.S., Hoffmann, E., Salomon, R., Yen, H.L., and Webster, R.G. 2006. Cross-protectiveness and immunogenicity of influenza A/Duck/Singapore/3/97(H5) vaccines against infection with A/Vietnam/1203/04(H5N1) virus in ferrets. J. Infect. Dis. 194, 1040–1043.PubMedCrossRefGoogle Scholar
  19. Lu, X., Tumpey, T.M., Morken, T., Zaki, S.R., Cox, N.J., and Katz, J.M. 1999. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J. Virol. 73, 5903–5911.PubMedGoogle Scholar
  20. Mahmood, K., Bright, R.A., Mytle, N., Carter, D.M., Crevar, C.J., Achenbach, J.E., Heaton, P.M., Tumpey, T.M., and Ross, T.M. 2008. H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses. Vaccine 26, 5393–5399.PubMedCrossRefGoogle Scholar
  21. Miyaki, C., Quintilio, W., Miyaji, E.N., Botosso, V.F., Kubrusly, F.S., Santos, F.L., Iourtov, D., Higashi, H.G., and Raw, I. 2010. Production of H5N1 (NIBRG-14) inactivated whole virus and split virion influenza vaccines and analysis of immunogenicity in mice using different adjuvant formulations. Vaccine 28, 2505–2509.PubMedCrossRefGoogle Scholar
  22. Murakami, S., Iwasa, A., Iwatsuki-Horimoto, K., Ito, M., Kiso, M., Kida, H., Takada, A., Nidom, C.A., Mai, l.Q., Yamada, S., and et al. 2008. Cross-clade protective immunity of H5N1 influenza vaccines in a mouse model. Vaccine 26, 6398–6404.PubMedCrossRefGoogle Scholar
  23. Nidom, C.A., Takano, R., Yamada, S., Sakai-Tagawa, Y., Daulay, S., Aswadi, D., Suzuki, T., Suzuki, Y., Shinya, K., Iwatsuki-Horimoto, K., and et al. 2010. Influenza A (H5N1) viruses from pigs, Indonesia. Emerg. Infect. Dis. 16, 1515–1523.PubMedCrossRefGoogle Scholar
  24. Palmer, D.F., Dowdle, W.R., Coleman, M.T., and Schild, G.C. 1975. Advanced laboratory techniques for influenza diagnosis. Immun. Ser. 6, 25–45.Google Scholar
  25. Park, K.J., Kwon, H.I., Song, M.S., Pascua, P.N., Baek, Y.H., Lee, J.H., Jang, H.L., Lim, J.Y., Mo, I.P., Moon, H.J., and et al. 2011. Rapid evolution of low-pathogenic H9N2 avian influenza viruses following poultry vaccination programmes. J. Gen. Virol. 92, 36–50.PubMedCrossRefGoogle Scholar
  26. Reed, L.J. and Muench, H. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493–497.Google Scholar
  27. Sabirovic, M., Raw, L., Hall, S., Lock, F., and Coulson, N. 2006. International disease monitoring, October to December 2005. Vet. Rec. 158, 426–428.PubMedCrossRefGoogle Scholar
  28. Salzberg, S.L., Kingsford, C., Cattoli, G., Spiro, D.J., Janies, D.A., Aly, M.M., Brown, I.H., Couacy-Hymann, E., De Mia, G.M., Dung, d.H., and et al. 2007. Genome analysis linking recent European and African influenza (H5N1) viruses. Emerg. Infect. Dis. 13, 713–718.PubMedCrossRefGoogle Scholar
  29. Schickli, J.H., Flandorfer, A., Nakaya, T., Martinez-Sobrido, L., Garcia-Sastre, A., and Palese, P. 2001. Plasmid-only rescue of influenza A virus vaccine candidates. Philos. Trans. R. Soc. Lond B Biol. Sci. 356, 1965–1973.PubMedCrossRefGoogle Scholar
  30. Shi, W.F., Gibbs, M.J., Zhang, Y.Z., Zhang, Z., Zhao, X.M., Jin, X., Zhu, C.D., Yang, M.F., Yang, N.N., Cui, Y.J., and et al. 2008. Genetic analysis of four porcine avian influenza viruses isolated from Shandong, China. Arch. Virol. 153, 211–217.PubMedCrossRefGoogle Scholar
  31. Shortridge, K.F. 1999. Poultry and the influenza H5N1 outbreak in Hong Kong, 1997: abridged chronology and virus isolation. Vaccine 17, S26–S29.PubMedCrossRefGoogle Scholar
  32. Sims, L.D., Domenech, J., Benigno, C., Kahn, S., Kamata, A., Lubroth, J., Martin, V., and Roeder, P. 2005. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet. Rec. 157, 159–164.PubMedGoogle Scholar
  33. Smith, G.J., Fan, X.H., Wang, J., Li, K.S., Qin, K., Zhang, J.X., Vijaykrishna, D., Cheung, C.L., Huang, K., Rayner, J.M., and et al. 2006. Emergence and predominance of an H5N1 influenza variant in China. Proc. Natl. Acad. Sci. USA 103, 16936–16941.PubMedCrossRefGoogle Scholar
  34. Song, M.S., Oh, T.K., Pascua, P.N., Moon, H.J., Lee, J.H., Baek, Y.H., Woo, K.J., Yoon, Y., Sung, M.H., Poo, H., and et al. 2009a. Investigation of the biological indicator for vaccine efficacy against highly pathogenic avian influenza (HPAI) H5N1 virus challenge in mice and ferrets. Vaccine 27, 3145–3152.PubMedCrossRefGoogle Scholar
  35. Song, M.S., Pascua, P.N., Lee, J.H., Baek, Y.H., Lee, O.J., Kim, C.J., Kim, H., Webby, R.J., Webster, R.G., and Choi, Y.K. 2009b. The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J. Virol. 83, 12325–12335.PubMedCrossRefGoogle Scholar
  36. Subbarao, K., Chen, H., Swayne, D., Mingay, L., Fodor, E., Brownlee, G., Xu, X., Lu, X., Katz, J., Cox, N., and et al. 2003. Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology 305, 192–200.PubMedCrossRefGoogle Scholar
  37. Subbarao, K. and Luke, C. 2007. H5N1 viruses and vaccines. PLoS Pathog. 3, e40.PubMedCrossRefGoogle Scholar
  38. Suguitan, A.L.Jr., McAuliffe, J., Mills, K.L., Jin, H., Duke, G., Lu, B., Luke, C.J., Murphy, B., Swayne, D.E., Kemble, G., and et al. 2006. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med. 3, e360.PubMedCrossRefGoogle Scholar
  39. Webster, R.G., Guan, Y., Peiris, M., Walker, D., Krauss, S., Zhou, N.N., Govorkova, E.A., Ellis, T.M., Dyrting, K.C., Sit, T., and et al. 2002. Characterization of H5N1 influenza viruses that continue to circulate in geese in southeastern China. J. Virol. 76, 118–126.PubMedCrossRefGoogle Scholar
  40. World Health Organization. 2008. H5N1 avian influenza: timeline of major events.Google Scholar
  41. World Health Organization. 2011. Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO.Google Scholar
  42. Yamada, S., Suzuki, Y., Suzuki, T., Le, M.Q., Nidom, C.A., Sakai-Tagawa, Y., Muramoto, Y., Ito, M., Kiso, M., Horimoto, T., and et al. 2006. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444, 378–382.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Min-Suk Song
    • 1
  • Ho-Jin Moon
    • 2
  • Hyeok-il Kwon
    • 1
  • Philippe Noriel Q. Pascua
    • 1
  • Jun Han Lee
    • 1
  • Yun Hee Baek
    • 1
  • Kyu-Jin Woo
    • 3
  • Juhee Choi
    • 3
  • Sangho Lee
    • 3
  • Hyunseung Yoo
    • 3
  • Ingyeong Oh
    • 3
  • Yeup Yoon
    • 3
  • Jong-Bok Rho
    • 4
  • Moon-Hee Sung
    • 4
  • Seung-Pyo Hong
    • 4
  • Chul-Joong Kim
    • 2
  • Young Ki Choi
    • 1
    Email author
  1. 1.College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.College of Veterinary MedicineChungnam National UniversityDaejeonRepublic of Korea
  3. 3.Mogam Biotechology Research InstituteYonginRepublic of Korea
  4. 4.Bioleaders CorporationDaejeonRepublic of Korea

Personalised recommendations