Advertisement

Journal of Microbiology

, Volume 50, Issue 3, pp 419–425 | Cite as

Evaluation of the cell growth of mycobacteria using Mycobacterium smegmatis mc2 155 as a representative species

  • Jorge A. Gonzalez-y-Merchand
  • Ruben Zaragoza-Contreras
  • Rosalina Guadarrama-Medina
  • Addy C. Helguera-Repetto
  • Sandra Rivera-Gutierrez
  • Jorge F. Cerna-Cortes
  • Leopoldo Santos-Argumedo
  • Robert A. Cox
Articles

Abstract

The study of the in vitro cell growth of mycobacteria still remains a fastidious, difficult, and time-consuming procedure. In addition, assessing mycobacterial growth in the laboratory is often complicated by cell aggregation and slow growth-rate. We now report that the use of a stainless steel spring in the culture led to an absence of large cell clumps, to a decrease of dead cells in the exponential phase and to growth of a more homogeneous population of large cells. We also report that flow cytometry is a rapid, simple and reliable approach to monitor mycobacterial cell growth and viability. Here, we monitored Mycobacterium smegmatis cellular growth by optical density, dry cell mass, and colony forming units; in addition, viability, cell size and granularity profiles were analyzed by flow cytometry, and cell morphology by electron microscopy. Cultures monitored by flow cytometry may lead to a better understanding of the physiology of mycobacteria. Moreover, this methodology may aid in characterizing the cell growth of other fastidious species of microorganisms.

Keywords

mycobacterial growth mycobacterial physiology Mycobacterium smegmatis flow cytometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Álvarez-Barrientos, A., Arroyo, J., Cantón, R., Nombela, C., and Sánchez-Pérez, M. 2000. Applications of flow cytometry to clinical microbiology. Clin. Microbiol. Rev. 13, 167–195.PubMedCrossRefGoogle Scholar
  2. Beste, D.J., Peters, J., Hooper, T., Avignone-Rossa, C., Bushell, M.E., and McFadden, J. 2005. Compiling a molecular inventory for Mycobacterium bovis BCG at two growth rates: evidence for growth rate-mediated regulation of ribosome biosynthesis and lipid metabolism. J. Bacteriol. 187, 1677–1684.PubMedCrossRefGoogle Scholar
  3. Bremer, H. and Dennis, P.P. 1996. Modulation of chemical composition and other parameters of the cell growth rate, pp. 1553–1568. In Neidhardt, F.C., Curtis, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., and Umbarger, H.E. (eds.), Escherichia coli and Salmonella: cellular and molecular biology. 2nd ed. American Society for Microbiology, Washington, D.C., USA.Google Scholar
  4. Burdz, T.V.N., Wolfe, J., and Kabani, A. 2003. Evaluation of sputum decontamination methods for Mycobacterium tuberculosis using viable colony counts and flow cytometry. Diagn. Microbiol. Infect. Dis. 47, 503–509.PubMedCrossRefGoogle Scholar
  5. Cox, R.A. 2004. Quantitative relationships for specific growth rates and macromolecular compositions of Mycobacterium tuberculosis, Streptomyces coelicolor A3(2) and Escherichia coli B/r: an integrative theoretical approach. Microbiology 150, 1413–1426.PubMedCrossRefGoogle Scholar
  6. Cox, R.A. 2007. A scheme for the analysis of microarray measurements based on a quantitative theoretical framework for bacterial cell growth: application to studies of Mycobacterium tuberculosis. Microbiology 153, 3337–3349.PubMedCrossRefGoogle Scholar
  7. Engele, M., Stöbel, E., Castiglione, K., Schwerdtner, N., Wagner, M., Bölcskei, P., Röllinghoff, M., and Stenger, S. 2002. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J. Immunol. 168, 1328–133PubMedGoogle Scholar
  8. Gonzalez-y-Merchand, J.A., Colston, M.J., and Cox, R.A. 1998. Roles of multiple promoters in transcription of ribosomal DNA: effects of growth conditions on precursor rRNA synthesis in mycobacteria. J. Bacteriol. 180, 5756–5761.PubMedGoogle Scholar
  9. Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., and Williams, S.T. 1994. Bergey’s Manual of Determinative Bacteriology, pp. 597–603. 9th ed, The Williams & Wilkins Co., Baltimore, Maryland, USA.Google Scholar
  10. James, B.W., Williams, A., and Marsh, P.D. 2000. The physiology and pathogenicity of Mycobacterium tuberculosis grown under controlled conditions in a defined medium. J. Appl. Microbiol. 88, 669–677.PubMedCrossRefGoogle Scholar
  11. MacFaddin, J.F. 1980. Biochemical tests for identification of medical bacteria, pp. 59–63. 2nd ed. The Williams & Wilkins Co., Baltimore, Maryland, USA.Google Scholar
  12. Moore, A.V., Kirk, S.M., Callister, S.M., Mazurek, G.H., and Schell, R.F. 1999. Safe determination of susceptibility of Mycobacterium tuberculosis to antimycobacterial agents by flow cytometry. J. Clin. Microbiol. 37, 479–483.PubMedGoogle Scholar
  13. Newton, J.A.Jr. and Weiss, P.J. 1994. Aspiration pneumonia caused by Mycobacterium smegmatis. Mayo Clin. Proc. 69, 296–298.PubMedGoogle Scholar
  14. Ratledge, C. 1982. Nutrition, growth and metabolism, pp. 185-271. In Ratledge, C. and Stanford, J.L. (eds.), Biology of the Mycobacteria, Academic Press Inc Ltd. London, UK.Google Scholar
  15. Sander, P., Belova, L., Kidan, Y.G., Mankin, A.S., and Böttger, E.C. 2002. Ribosomal and non-ribosomal resistance to oxazolidinones: species-specific idiosyncrasy of ribosomal alterations. Mol. Microbiol. 46, 1295–1304.PubMedCrossRefGoogle Scholar
  16. Sander, P., Prammananan, T., and Böttger, E.C. 1996. Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. Mol. Microbiol. 22, 841–848.PubMedCrossRefGoogle Scholar
  17. Skiest, D.J. and Levi, M.E. 1998. Catheter-related bacteremia due to Mycobacterium smegmatis. South Med. J. 91, 36–37.PubMedCrossRefGoogle Scholar
  18. Smeulders, M.J., Keer, J., Speight, R.A., and Williams, H.D. 1999. Adaptation of Mycobacterium smegmatis to stationary phase. J. Bacteriol. 181, 270–283.PubMedGoogle Scholar
  19. Stephan, J., Bender, J., Wolschendorf, F., Hoffmann, C., Roth, E., Mailänder, C., Engelhardt, H., and Niederweis, M. 2005. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol. Microbiol. 58, 714–730.PubMedCrossRefGoogle Scholar
  20. Wallace, R.J.Jr., Nash, D.R., Tsukamura, M., Blacklock, Z.M., and Silcox, V.A. 1998. Human disease due to Mycobacterium smegmatis. J. Infect. Dis. 158, 52–59.CrossRefGoogle Scholar
  21. Wayne, L.G. 1994. Cultivation of Mycobacterium tuberculosis for research purposes, pp. 73–83. In Bloom, B.R. (ed.), Tuberculosis: pathogenesis, protection and control. American Society for Microbiology, Washington, D.C., USA.Google Scholar
  22. Wheeler, P.R. and Ratledge, C. 1994. Metabolism of Mycobacterium tuberculosis, pp. 353–380. In Bloom, B.R. (ed.). Tuberculosis: pathogenesis, protection and control, American Society for Microbiology, Washington, D.C., USA.Google Scholar
  23. WHO (World Health Organization). 2011. Global tuberculosis control 2011. Available at: http://www.who.int/tb/publications/global_report/2011/gtbr11_full.pdf

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jorge A. Gonzalez-y-Merchand
    • 1
  • Ruben Zaragoza-Contreras
    • 1
  • Rosalina Guadarrama-Medina
    • 1
  • Addy C. Helguera-Repetto
    • 1
  • Sandra Rivera-Gutierrez
    • 1
  • Jorge F. Cerna-Cortes
    • 1
  • Leopoldo Santos-Argumedo
    • 2
  • Robert A. Cox
    • 3
  1. 1.Departamento de Microbiologia, Escuela Nacional de Ciencias BiologicasIPN, Prolong. Carpio y Plan de Ayala s/n, Col. Casco de Santo TomasMexico, D.F.Mexico
  2. 2.Departamento de Biomedicina MolecularCINVESTAVZacatenco, Mexico, D.F.Mexico
  3. 3.Division of Mycobacterial ResearchNational Institute for Medical ResearchLondonUK

Personalised recommendations