The Journal of Microbiology

, Volume 50, Issue 1, pp 38–44 | Cite as

Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns

  • Ben Fan
  • Rainer Borriss
  • Wilfrid Bleiss
  • Xiaoqin Wu
Articles

Abstract

The colonization of three types of different plants, Zea mays, Arabidopsis thaliana, and Lemna minor, by GFP-labeled Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 was studied in gnotobiotic systems using confocal laser scanning microscopy and electron microscopy. It was demonstrated that FZB42 was able to colonize all the plants. On one hand, similar to some Gram-negative rhizobacteria like Pseudomonas, FZB42 favored the areas such as the concavities in root surfaces and the junctions where lateral roots occurred from the primary roots; on the other hand, we clearly demonstrated that root hairs were a popular habitat to the Gram-positive rhizobacterium. FZB42 exhibited a specific colonization pattern on each of the three types of plants. On Arabidopsis, tips of primary roots were favored by FZB42 but not so on maize. On Lemna, FZB42 accumulated preferably along the grooves between epidermal cells of roots and in the concave spaces on ventral sides of fronds. The results suggested L. minor to be a promising tool for investigations on plant-microbial interaction due to a series of advantages it has. Colonization of maize and Arabidopsis roots by FZB42 was also studied in the soil system. Comparatively, higher amount of FZB42 inoculum (∼108 CFU/ml) was required for detectable root colonization in the soil system, where the preference of FZB42 cells to root hairs were also observed.

Keywords

PGPR Bacillus amyloliquefaciens Zea mays Arabidopsis thaliana Lemna minor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, W.P. 2010. Wayne’s Word Lemnaceae On-Line. Retrieved Sept., 2007, from http://waynesword.palomar.edu/1wayindx.htm.
  2. Bahme, J.B. and Schroth, M.N. 1987. Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology 77, 1093–1100.CrossRefGoogle Scholar
  3. Bais, H.P., Fall, R., and Vivanco, J.M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319.PubMedCrossRefGoogle Scholar
  4. Bloemberg, G.V., Otoole, G.A., Lugtenberg, B.J.J., and Kolter, R. 1997. Green fluorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol. 63, 4543–4551.PubMedGoogle Scholar
  5. Branda, S.S., Gonzalez-Pastor, J.E., Ben-Yehuda, S., Losick, R., and Kolter, R. 2001. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98, 11621–11626.PubMedCrossRefGoogle Scholar
  6. Butcher, B.G. and Helmann, J.D. 2006. Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. Mol. Microbiol. 60, 765–782.PubMedCrossRefGoogle Scholar
  7. Chen, X.H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W.R., Reva, O., and et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014.PubMedCrossRefGoogle Scholar
  8. Chen, X.H., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S., and Borriss, R. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140, 38–44.PubMedCrossRefGoogle Scholar
  9. Chin-A-Woeng, T.F.C., Bloemberg, G.V., Mulders, I.H.M., Dekkers, L.C., and Lugtenberg, B.J.J. 2000. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol. Plant. Microbe Interact. 13, 1340–1345.PubMedCrossRefGoogle Scholar
  10. Chin-A-Woeng, T.F.C., de Priester, W., van der Bij, A.J., and Lugtenberg, B.J.J. 1997. Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol. Plant Microb. Interact. 10, 79–86.CrossRefGoogle Scholar
  11. Choudhary, D.K. and Johri, B.N. 2009. Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol. Res. 164, 493–513.PubMedCrossRefGoogle Scholar
  12. Compant, S., Duffy, B., Nowak, J., Clement, C., and Barka, E.A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951–4959.PubMedCrossRefGoogle Scholar
  13. Conn, K.L., Lazarovits, G., and Nowak, J. 1997. A gnotobiotic bioassay for studying interactions between potatoes and plant growth-promoting rhizobacteria. Can. J. Microbiol. 43, 801–808.CrossRefGoogle Scholar
  14. Cross, J.W. 2002, Sep.15.2002. The Charms of Duckweed. Retrieved March, 2008, from http://www.mobot.org/jwcross/duckweed/duckweed.htm.
  15. Davies, K. and Whitbread, R. 1989. Factors affecting the colonisation of a root system by fluorescent Pseudomonads: The effects of water, temperature and soil microflora. 116, 247–256.Google Scholar
  16. Fan, B., Chen, X.H., Budiharjo, A., Bleiss, W., Vater, J., and Borriss, R. 2011. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J. Biotechnol. 151, 303–311.PubMedCrossRefGoogle Scholar
  17. Fukui, R., Poinar, E.I., Bauer, P.H., Schroth, M.N., Hendson, M., Wang, X.L., and Hancock, J.G. 1994. Spatial colonization patterns and interaction of bacteria on inoculated sugar-beet seed. Phytopathology 84, 1338–1345.CrossRefGoogle Scholar
  18. Idris, E.E., Bochow, H., Ross, H., and Borriss, R. 2004. Use of Bacillus subtilis as biocontrol agent VI. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J. Plant Disease Protection 111, 583–597.Google Scholar
  19. Idris, E.E., Iglesias, D.J., Talon, M., and Borriss, R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant. Microbe Interact. 20, 619–626.PubMedCrossRefGoogle Scholar
  20. Jones, M.B. and Blaser, M.J. 2003. Detection of a luxS-signaling molecule in Bacillus anthracis. Infect. Immun. 71, 3914–3919.PubMedCrossRefGoogle Scholar
  21. Kamilova, F., Validov, S., Azarova, T., Mulders, I., and Lugtenberg, B. 2005. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol. 7, 1809–1817.PubMedCrossRefGoogle Scholar
  22. Kinsinger, R.F., Shirk, M.C., and Fall, R. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185, 5627–5631.PubMedCrossRefGoogle Scholar
  23. Kloepper, J.W. and Schroth, M.N. 1981. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71, 642–644.CrossRefGoogle Scholar
  24. Koumoutsi, A., Chen, X.H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., and Borriss, R. 2004. Structural and functional characterization of gene clusters directing nonribo somal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186, 1084–1096.PubMedCrossRefGoogle Scholar
  25. Koumoutsi, A., Chen, X.H., Vater, J., and Borriss, R. 2007. DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl. Environ. Microbiol. 73, 6953–6964.PubMedCrossRefGoogle Scholar
  26. Lifshitz, R., Kloepper, J.W., Kozlowski, M., Simonson, C., Carlson, J., Tipping, E.M., and Zaleska, I. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33, 390–395.CrossRefGoogle Scholar
  27. Liu, X., Zhao, H., and Chen, S. 2006. Colonization of maize and rice plants by strain Bacillus megaterium C4. Curr. Microbiol. 52, 186–190.PubMedCrossRefGoogle Scholar
  28. Lopez-Bucio, J., Campos-Cuevas, J.C., Hernandez-Calderon, E., Velasquez-Becerra, C., Farias-Rodriguez, R., Macias-Rodriguez, L.I., and Valencia-Cantero, E. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol. Plant. Microbe Interact. 20, 207–217.PubMedCrossRefGoogle Scholar
  29. Lugtenberg, B.J.J. and Dekkers, L.C. 1999. What makes Pseudomonas bacteria rhizosphere competent? Environ. Microbiol. 1, 9–13.PubMedCrossRefGoogle Scholar
  30. Lugtenberg, B.J.J., Dekkers, L.C., and Bloemberg, G.V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39, 461–490.PubMedCrossRefGoogle Scholar
  31. Lugtenberg, B.J.J. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556.PubMedCrossRefGoogle Scholar
  32. Lugtenberg, B.J.J., Kravchenko, L.V., and Simons, M. 1999. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1, 439–446.PubMedCrossRefGoogle Scholar
  33. Lyle Lockhart, W., Billeck, B.N., and Baron, C.L. 1989. Bioassays with a floating aquatic plant (Lemna minor) for effects of sprayed and dissolved glyphosate. Hydrobiologia 188–189, 353–359.CrossRefGoogle Scholar
  34. Meharg, A.A. and Killham, K. 1995. Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms. Plant Soil 170, 345–349.CrossRefGoogle Scholar
  35. Ogata, H., Cao, Z., Losi, A., and Gartner, W. 2009. Crystallization and preliminary X-ray analysis of the LOV domain of the blue-light receptor YtvA from Bacillus amyloliquefaciens FZB42. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65, 853–855.PubMedCrossRefGoogle Scholar
  36. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16, 115–125.PubMedCrossRefGoogle Scholar
  37. Paulitz, T.C. and Belanger, R.R. 2001. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39, 103–133.PubMedCrossRefGoogle Scholar
  38. Preston, G.M. 2004. Plant perceptions of plant growth-promoting Pseudomonas. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 907–918.PubMedCrossRefGoogle Scholar
  39. Ramey, B.E., Koutsoudis, M., Bodman, S.B.v., and Fuqua, C. 2004. Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol. 7, 602–609.PubMedCrossRefGoogle Scholar
  40. Reva, O.N., Dixelius, C., Meijer, J., and Priest, F.G. 2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol. Ecol. 48, 249–259.PubMedCrossRefGoogle Scholar
  41. Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., and Pare, P.W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134, 1017–1026.PubMedCrossRefGoogle Scholar
  42. Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Wei, H.X., Pare, P.W., and Kloepper, J.W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100, 4927–4932.PubMedCrossRefGoogle Scholar
  43. Schneider, K., Chen, X.H., Vater, J., Franke, P., Nicholson, G., Borriss, R., and Sussmuth, R.D. 2007. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70, 1417–1423.PubMedCrossRefGoogle Scholar
  44. Timmusk, S., Grantcharova, N., and Wagner, E.G. 2005. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol. 71, 7292–7300.PubMedCrossRefGoogle Scholar
  45. van de Mortel, M. and Halverson, L.J. 2004. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats. Mol. Microbiol. 52, 735–750.PubMedCrossRefGoogle Scholar
  46. Watnick, P.I. and Kolter, R. 1999. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34, 586–595.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ben Fan
    • 1
    • 2
  • Rainer Borriss
    • 2
  • Wilfrid Bleiss
    • 3
  • Xiaoqin Wu
    • 1
  1. 1.Institute of Forest ProtectionNanjing Forestry UniversityNanjingP. R. China
  2. 2.Institut für Biologie/BakteriengenetikHumboldt Universität BerlinBerlinGermany
  3. 3.Institut für Biologie/Molekulare ParasitologieHumboldt-Universität BerlinBerlinGermany

Personalised recommendations