The Journal of Microbiology

, Volume 50, Issue 1, pp 50–57 | Cite as

Diversity and physiological properties of root endophytic actinobacteria in native herbaceous plants of Korea

  • Tae-Ui Kim
  • Sung-Heun Cho
  • Ji-Hye Han
  • Young Min Shin
  • Hyang Burm Lee
  • Seung Bum Kim


Endophytic actinobacterial diversity in the native herbaceous plant species of Korea was analyzed using a culture-based approach. Sixty one actinobacterial strains were isolated, and assigned to 15 genera based on 16S rRNA gene analysis. The members of the genus Streptomyces comprised 45.9% of the total isolates, followed by Micromonospora (18.8%), Rhodococcus (6.6%), Microbispora (4.9%), and Micrococcus (4.9%). Other minor constituents included members of Microbacterium, Streptacidiphilus, Arthrobacter, Dietzia, Kitasatospora, Herbiconiux, Mycobacterium, Nocardia, Rathayibacter, and Tsukamurella. Among the isolates, 65.6% exhibited at least one hydrolytic enzyme activity out of four, and 45.9% exhibited antagonistic activity against at least one fungal pathogen out of five, thus demonstrating that endophytic actinobacteria can be an important source of bioactive compounds. Notably, most strains of Streptomyces proved active for both enzymatic and antagonistic activities.


endophytic actinobacteria native herbaceous plant Streptomyces Rhodococcus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aravind, R., Kumar, A., Eapen, S.J., and Ramana, K.V. 2009. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett. Appl. Microbiol. 48, 58–64.PubMedCrossRefGoogle Scholar
  2. Bérdy, J. 2005. Bioactive microbial metabolites. J. Antibiot. 58, 1–26.PubMedCrossRefGoogle Scholar
  3. Burch, G. and Sarathchandra, U. 2006. Activities and survival of endophytic bacteria in white clover (Trifolium repens L.). Can. J. Microbiol. 52, 848–856.PubMedCrossRefGoogle Scholar
  4. Cao, L., Qiu, Z., Dai, X., Tan, H., Lin, Y., and Zhou, S. 2004. Isolation of endophytic actinomycetes from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J. Microbiol. Biotechnol. 20, 501–504.CrossRefGoogle Scholar
  5. Chernin, L., Ismailov, Z., Haran, S., and Chet, I. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 61, 1720–1726.PubMedGoogle Scholar
  6. Cho, S.H., Han, J.H., Ko, H.Y., and Kim, S.B. 2008. Streptacidiphilus anmyonensis sp. nov., Streptacidiphilus rugosus sp. nov. and Streptacidiphilus melanogenes sp. nov., acidophilic actinobacteria isolated from Pinus soils. Int. J. Syst. Evol. Microbiol. 58, 1566–1570.PubMedCrossRefGoogle Scholar
  7. Cho, S.H., Han, J.H., Seong, C.N., and Kim, S.B. 2006. Phylogenetic diversity of acidophilic sporoactinobacteria isolated from various soils. J. Microbiol. 44, 600–606.PubMedGoogle Scholar
  8. Cho, K.M., Hong, S.Y., Lee, S.M., Kim, Y.H., Kahng, G.G., Lim, Y.P., Kim, H., and Yun, H.D. 2007. Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb. Ecol. 54, 341–351.PubMedCrossRefGoogle Scholar
  9. Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.PubMedCrossRefGoogle Scholar
  10. Conn, V.M. and Franco, M.M. 2004. Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl. Environ. Microbiol. 70, 1787–1794.PubMedCrossRefGoogle Scholar
  11. Coombs, J.T. and Franco, C.M. 2003. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69, 5603–5608.PubMedCrossRefGoogle Scholar
  12. Criquet, S. 2002. Measurement and characterization of cellulase activity in sclerophyllous forest litter. J. Microbiol. Methods 50, 165–173.PubMedCrossRefGoogle Scholar
  13. Deng, Z.S., Zhao, L.F., Kong, Z.Y., Yang, W.Q., Lindström, K., Wang, E.T., and Wei, G.H. 2011. Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol. Ecol. 76, 463–475.PubMedCrossRefGoogle Scholar
  14. El-Tarabily, K.A., Nassar, A.H., Hardy, G.E., and Sivasithamparam, K. 2009. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Appl. Microbiol. 106, 13–26.PubMedCrossRefGoogle Scholar
  15. Evtushenko, L.I. and Takeuchi, M. 2003. The family Microbacteriaceae, pp. 1020–1098. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn., vol. 3. Springer, New York, N.Y., USA.Google Scholar
  16. Hasegawa, S., Meguro, A., Shimizu, M., Nishimura, T., and Kunoh, H. 2006. Endophytic actinomycetes and their interactions with host plants. Actinomycetologia 20, 72–81.CrossRefGoogle Scholar
  17. Huang, Y., Cui, Q., Wang, L., Rodriguez, C., Quintana, E., Goodfellow, M., and Liu, Z. 2004. Streptacidiphilus jiangxiensis sp. nov., a novel actinomycete isolated from acidic rhizosphere soil in China. Antonie van Leeuwenhoek 86, 159–165.Google Scholar
  18. Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W.W., and Sessitsch, A. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677.PubMedCrossRefGoogle Scholar
  19. Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules, pp. 21–123. In Munro, H.N. (ed.), Mammalian Protein Metabolism. Academic Press, New York, N.Y., USA.Google Scholar
  20. Kaewkla, O. and Franco, C.M. 2010. Nocardia callitridis sp. nov., an endophytic actinobacterium isolated from a surface-sterilized root of an Australian native pine tree. Int. J. Syst. Evol. Microbiol. 60, 1532–1536.Google Scholar
  21. Kim, S.B., Lonsdale, J., Seong, C.N., and Goodfellow, M. 2003. Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et al. 1997. Antonie van Leeuwenhoek 83, 107–116.PubMedCrossRefGoogle Scholar
  22. Küster, E. and Williams, S.T. 1964. Selection of media for isolation of streptomycetes. Nature 202, 928–929.CrossRefGoogle Scholar
  23. Lee, S.O., Choi, G.J., Choi, Y.H., Jang, K.S., Park, D.J., Kim, C.J., and Kim, J.C. 2008. Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J. Microbiol. Biotechnol. 18, 1741–1746.PubMedGoogle Scholar
  24. Locci, R. 1989. Streptomycetes and related genera, pp. 2451–2452. In Williams, S.T., Sharpe, M.E., and Holt, J.G. (eds.), Bergey’s Manual of Systematic Bacteriology, vol. 4. Williams and Wilkins, Baltimore, USA.Google Scholar
  25. Marquez-Santacruz, H.A., Hernandez-Leon, R., Orozco-Mosqueda, M.C., Velazquez-Sepulveda, I., and Santoyo, G. 2010. Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet. Mol. Res. 9, 2372–2380.PubMedCrossRefGoogle Scholar
  26. Park, M.S., Jung, S.R., Lee, M.S., Kim, K.O., Do, J.O., Lee, K.H., Kim, S.B., and Bae, K.S. 2005. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J. Microbiol. 43, 219–227.PubMedGoogle Scholar
  27. Qin, S., Li, J., Chen, H.H., Zhao, G.Z., Zhu, W.Y., Jiang, C.L., Xu, L.H., and Li, W.J. 2009. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl. Environ. Microbiol. 75, 6176–6186.PubMedCrossRefGoogle Scholar
  28. Qin, S., Xing, K., Jiang, J.H., Xu, L.H., and Li, W.J. 2011. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl. Microbiol. Biotechnol. 89, 457–473.PubMedCrossRefGoogle Scholar
  29. Qiu, F., Huang, Y., Sun, L., Zhang, X., Liu, Z., and Song, W. 2007. Leifsonia ginsengi sp. nov., isolated from ginseng root. Int. J. Syst. Evol. Microbiol. 57, 405–408.PubMedCrossRefGoogle Scholar
  30. Rosenblueth, M. and Martínez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact. 19, 827–837.PubMedCrossRefGoogle Scholar
  31. Ryan, R.P., Germaine, K., Franks, A., Ryan, D.J., and Dowling, D.N. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278, 1–9.PubMedCrossRefGoogle Scholar
  32. Sawar, M. and Kremer, R.J. 1995. Determination of bacterially derived auxins using a microplate method. Lett. Appl. Microbiol. 20, 282–285.CrossRefGoogle Scholar
  33. Selosse, M.A., Baudoin, E., and Vandenkoornhuyse, P. 2004. Symbiotic microorganisms, a key for ecological success and protection of plants. CR Biol. 327, 639–648.CrossRefGoogle Scholar
  34. Sheng, H.M., Gao, H.S., Xue, L.G., Ding, S., Song, C.L., Feng, H.Y., and An, L.Z. 2011. Analysis of the composition and characteristics of culturable endophytic bacteria within subnival plants of the Tianshan Mountains, northwestern China. Curr. Microbiol. 62, 923–932.PubMedCrossRefGoogle Scholar
  35. Shin, D.S., Park, M.S., Jung, S., Lee, M.S., Lee, K.H., Bae, K.S., and Kim, S.B. 2007. Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. J. Microbiol. Biotechnol. 17, 1361–1368.PubMedGoogle Scholar
  36. Stone, J.K., Bacon, C.W., and White, J.F.Jr. 2000. An overview of endophytic microbes: endophytism defined, pp. 3–30. In Bacon, C.W. and White, J.F. Jr. (eds.), Microbial Endophytes. Marcel Dekker, New York, N.Y., USA.Google Scholar
  37. Strobel, G., Daisy, B., Castillo, U., and Harper, J. 2004. Natural products from endophytic microorganisms. J. Nat. Prod. 67, 257–268.PubMedCrossRefGoogle Scholar
  38. Sturz, A.V. and Kimpinski, J. 2004. Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262, 241–249.CrossRefGoogle Scholar
  39. Sulbarán, M., Pérez, E., Ball, M.M., Bahsas, A., and Yarzábal, L.A. 2008. Characterization of the mineral phosphate-solubilizing activity of Pantoea aglomerans MMB051 isolated from an iron-rich soil in southeastern Venezuela (Bolívar State). Curr. Microbiol. 58, 378–383.PubMedCrossRefGoogle Scholar
  40. Tian, X., Cao, L., Tan, H., Han, W., Chen, M., Liu, Y., and Zhou, S. 2007. Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb. Ecol. 53, 700–707.PubMedCrossRefGoogle Scholar
  41. Vendan, R.T., Yu, Y.J., Lee, S.H., and Rhee, Y.H. 2010. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol. 48, 559–565.PubMedCrossRefGoogle Scholar
  42. Verma, V.C., Gond, S.K., Kumar, A., Mishra, A., Kharwar, R.N., and Gange, A.C. 2009. Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb. Ecol. 57, 749–756.PubMedCrossRefGoogle Scholar
  43. Wang, L., Huang, Y., Liu, Z., Goodfellow, M., and Rodríguez, C. 2006. Streptacidiphilus oryzae sp. nov., an actinomycete isolated from rice-field soil in Thailand. Int. J. Syst. Evol. Microbiol. 56, 1257–1261.PubMedCrossRefGoogle Scholar
  44. Wu, Y., Lu, C., Qian, X., Huang, Y., and Shen, Y. 2009. Diversities within genotypes, bioactivity and biosynthetic genes of endophytic actinomycetes isolated from three pharmaceutical plants. Curr. Microbiol. 59, 475–482.PubMedCrossRefGoogle Scholar
  45. Yuan, H., Zhang, X., Zhao, K., Zhong, K., Gu, Y., and Lindström, K. 2008. Genetic characterisation of endophytic actinobacteria isolated from the medicinal plants in Sichuan. Ann. Microbiol. 58, 597–604.CrossRefGoogle Scholar
  46. Zakhia, F., Jeder, H., Willems, A., Gillis, M., Dreyfus, B., and de Lajudie, P. 2006. Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb. Ecol. 51, 375–393.PubMedCrossRefGoogle Scholar
  47. Zhao, K., Penttinen, P., Guan, T., Xiao, J., Chen, Q., Xu, J., Lindström, K., Zhang, L., Zhang, X., and Strobel, G.A. 2011. The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr. Microbiol. 62, 182–190.PubMedCrossRefGoogle Scholar
  48. Zinniel, D.K., Lambrecht, P., Harris, N.B., Feng, Z., Kuczmarski, D., Higley, P., Ishimaru, C.A., Arunakumari, A., Barletta, R.G., and Vidaver, A.K. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68, 2198–2208.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tae-Ui Kim
    • 1
  • Sung-Heun Cho
    • 1
  • Ji-Hye Han
    • 1
  • Young Min Shin
    • 1
  • Hyang Burm Lee
    • 2
  • Seung Bum Kim
    • 1
  1. 1.Department of Microbiology and Molecular Biology, School of Bioscience and BiotechnologyChungnam National UniversityDaejeonRepublic of Korea
  2. 2.Environmental Microbiology Lab, Division of Applied Bioscience and BiotechnologyChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations