Advertisement

The Journal of Microbiology

, Volume 50, Issue 1, pp 161–165 | Cite as

Leucobacter denitrificans sp. nov., isolated from cow dung

  • Hang-Yeon Weon
  • Rangasamy Anandham
  • Tomohiko Tamura
  • Moriyuki Hamada
  • Soo-Jin Kim
  • Yi-Seul Kim
  • Ken-ichiro Suzuki
  • Soon-Wo KwonEmail author
Note

Abstract

The bacterial strain M1T8B10T was isolated from cow dung in Suwon, Republic of Korea. The strain was a Gram stain-positive rod, nonmotile, and non-spore-forming. According to 16S rRNA gene sequence analysis, the strain fell within the clade of the genus Leucobacter, showing the highest sequence similarities with Leucobacter aridicollis L-9T (98.7%), Leucobacter iarius 40T (98.4%), and Leucobacter komagatae JCM 9414T (98.2%). Cell-wall peptidoglycan contained the diagnostic diamino acid 2,4-diaminobutyric acid of the genus Leucobacter, showing B-type cross-linked peptidoglycans. The major fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. The quinone system consisted of the menaquinones MK-11 (78%) and MK-10 (22%). The polar lipid profiles contained diphosphatidylglycerol, phosphatidylglycerol, and an unidentified glycolipid. Differences in several physiological features including nitrate reduction enabled the isolate to be differentiated from all recognized Leucobacter species. Based on these phylogenetic, chemotaxonomic, and phenotypic results, the isolate represents a novel species, for which the name Leucobacter denitrificans sp. nov. is proposed. The type strain is M1T8B10T (=KACC 14055T =NBRC 106309T).

Keywords

Leucobacter denitrificans sp. nov. taxonomy 16S rRNA gene phylogeny new species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2012_1324_MOESM1_ESM.pdf (50 kb)
Supplementary material, approximately 49.5 KB.

References

  1. Behrendt, U., Ulrich, A., and Schumann, P. 2008. Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int. J. Syst. Evol. Microbiol.58, 2574–2578.PubMedCrossRefGoogle Scholar
  2. Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: a Web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol.57, 2259–2261.PubMedCrossRefGoogle Scholar
  3. Halpern, M., Shakéd, T., Pukall, R., and Schumann, P. 2009. Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int. J. Syst. Evol. Microbiol.59, 665–670.PubMedCrossRefGoogle Scholar
  4. Kumar, S., Tamura, K., and Nei, M. 2004. MEGA3: integrated soft ware for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform.5, 150–163.PubMedCrossRefGoogle Scholar
  5. Lin, Y.C., Uemori, K., De Briel, D.A., Arunpairojana, V., and Yokota, A. 2004. Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int. J. Syst. Evol. Microbiol.54, 1669–1676.PubMedCrossRefGoogle Scholar
  6. Martin, E., Lodders, N., Jäckel, U., Schumann, P., and Kämpfer, P. 2010. Leucobacter aerolatus sp. nov., from the air of a duck barn. Int. J. Syst. Evol. Microbiol.60, 2838–2842.PubMedCrossRefGoogle Scholar
  7. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.CrossRefGoogle Scholar
  8. Morais, P.V., Francisco, R., Branco, R., Chung, A.P., and Da Costa, M.S. 2004. Leucobacter chromiireducens sp. nov., and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst. Appl. Microbiol.27, 646–652.PubMedCrossRefGoogle Scholar
  9. Morais, P.V., Paulo, C., Francisco, R., Branco, R., Chung, A.P., and Da Costa, M.S. 2006. Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst. Appl. Microbiol.29, 414–421.PubMedCrossRefGoogle Scholar
  10. Muir, R.E. and Tan, M.W. 2007. Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens. Int. J. Syst. Evol. Microbiol.57, 2770–2776.PubMedCrossRefGoogle Scholar
  11. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc., Newark, DE, USA.Google Scholar
  12. Schleifer, K.H. and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev.36, 407–477.PubMedGoogle Scholar
  13. Seldin, L. and Dubnau, D. 1985. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int. J. Syst. Bacteriol.35, 151–154.CrossRefGoogle Scholar
  14. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. Methods for General and Molecular Bacteriology, pp. 607–654. In Gerhardt, P., Murray, R.G.E., Wood, and Krieg, N.R. (eds.) American Society for Microbiology, Washington, D.C., USA.Google Scholar
  15. Somvanshi, V.S., Lang, E., Schumann, P., Pukall, R., Kroppenstedt, R.M., Ganguly, S., and Stackebrandt, E. 2007. Leucobacter iarius sp. nov., in the family Microbacteriaceae. Int. J. Syst. Evol. Microbiol.57, 682–686.PubMedCrossRefGoogle Scholar
  16. Sturm, G., Jacobs, J., Spröer, C., Schumann, P., and Gescher, J. 2010. Leucobacter chromiiresistens sp. nov., a novel chromate-resistant strain in the genus Leucobacter. Int. J. Syst. Evol. Microbiol.61, 956–960.PubMedCrossRefGoogle Scholar
  17. Takeuchi, M., Weiss, N., Schumann, P., and Yokota, A. 1996. Leucobacter komagatae gen. nov., sp. nov., a new aerobic Gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int. J. Syst. Bacteriol.46, 967–971.PubMedCrossRefGoogle Scholar
  18. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680.PubMedCrossRefGoogle Scholar
  19. Weon, H.Y., Kim, B.Y., Yoo, S.H., Lee, S.Y., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2006. Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bacteroidetes, isolated from soil cultivated with Korean ginseng. Int. J. Syst. Evol. Microbiol.56, 1777–1782.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hang-Yeon Weon
    • 1
  • Rangasamy Anandham
    • 2
  • Tomohiko Tamura
    • 3
  • Moriyuki Hamada
    • 3
  • Soo-Jin Kim
    • 1
  • Yi-Seul Kim
    • 1
  • Ken-ichiro Suzuki
    • 3
  • Soon-Wo Kwon
    • 1
    Email author
  1. 1.Korean Agricultural Culture Collection (KACC)National Academy of Agricultural Science, Rural Development AdministrationSuwonRepublic of Korea
  2. 2.Department of Agricultural MicrobiologyAgricultural College and Research InstituteMaduraiIndia
  3. 3.NITE Biological Resource Center (NBRC)National Institute of Technology and EvaluationKisarazu, ChibaJapan

Personalised recommendations