Advertisement

The Journal of Microbiology

, Volume 50, Issue 2, pp 354–358 | Cite as

Arenimonas aquaticum sp. nov., a member of the gammaproteobacterium, isolated from a freshwater reservoir

  • A. -Ram Kim
  • Siwon Lee
  • Kyudong Han
  • Tae-Young Ahn
Note

Abstract

A novel bacterial strain, designated NA-09T, was isolated from a freshwater sample collected from the Cheonho reservoir, Republic of Korea. Colonies were creamy-white pigmented, translucent, and circular with convex shape. The isolate was Gram-staining negative, strictly aerobic, motile, and rod-shaped. The 16S rRNA gene sequence analysis revealed that strain NA-09T belonged to the genus Arenimonas and showed the highest sequence similarities with Arenimonas malthae CC-JY-1T (95.4%), A. oryziterrae YC6267T (94.9%), A. composti P2-12-1T (94.8%), and A. donghaensis H03-R19T (94.1%). The major fatty acids were iso-C16:0 (20.8%), iso-C15:0 (16.9%), summed feature 1 (13.2%), and iso-C16:1 ω7c alcohol (10.2%). The major isoprenoid quinone of the isolate was ubiquionone-8. On the basis of the data from the polyphasic characterization, the strain NA-09T represents a novel species, for which the name Arenimonas aquaticum sp. nov. is proposed (type strain NA-09T =KACC 14663T =NBRC 106550T).

Keywords

gammaproteobacteria Arenimonas freshwater 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2012_1301_MOESM1_ESM.pdf (105 kb)
Supplementary material, approximately 104 KB.

References

  1. Aslam, Z., Park, J.H., Kim, S.W., Jeon, C.O., and Chung, Y.R. 2009. Arenimonas oryziterrae sp. nov., isolated from a field of rice (Oryza sativa L.) managed under a no-tillage regime, and reclassification of Aspromonas composti as Arenimonas composti comb. nov. Int. J. Syst. Evol. Microbiol.59, 2967–2972.PubMedCrossRefGoogle Scholar
  2. Bandelt, H.J., Forster, P., and Rohl, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol.16, 37–48.PubMedCrossRefGoogle Scholar
  3. Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol.57, 2259–2261.PubMedCrossRefGoogle Scholar
  4. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39, 783–791.CrossRefGoogle Scholar
  5. Groth, I., Schumann, P., Weiss, N., Martin, K., and Rainey, F.A. 1996. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int. J. Syst. Evol. Microbiol.46, 234–239.Google Scholar
  6. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser.41, 95–98.Google Scholar
  7. Jin, L., Kim, K.K., Im, W.T., Yang, H.C., and Lee, S.T. 2007. Aspromonas composti gen. nov., sp. nov., a novel member of the family Xanthomonadaceae. Int. J. Syst. Evol. Microbiol. 57, 1876–1880.PubMedCrossRefGoogle Scholar
  8. Kimura, M. 1980. A simple method of estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16, 111–120.PubMedCrossRefGoogle Scholar
  9. Kwon, S.W., Kim, B.Y., Weon, H.Y., Baek, Y.K., and Go, S.J. 2007. Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int. J. Syst. Evol. Microbiol.57, 954–958.PubMedCrossRefGoogle Scholar
  10. Lee, S., Oh, H.W., Lee, K.H., and Ahn, T.Y. 2009. Methylobacterium dankookense sp. nov., isolated from drinking water. J. Microbiol.47, 716–720.PubMedCrossRefGoogle Scholar
  11. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol.39, 159–167.CrossRefGoogle Scholar
  12. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.CrossRefGoogle Scholar
  13. Moore, D.D. and Dowhan, D. 1995. Preparation and analysis of DNA. pp. 2–11. In Ausubel, F.W., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.), Current Protocols in Molecular Biology, Wiley, New York, N.Y., USA.Google Scholar
  14. Olsen, I., Dewhirst, F.E., Paster, B.J., and Busse, H.J. 2005. Family I. Pasteurellaceae Phol 1981b, 382VP, pp. 851–856. In Brenner, D.J., Krieg, N.R., Staley, J.T., and Garrity, G.M. (eds.), Bergey’s Manual of Systematic Bacteriology: the proteobacteria, part B: the gammaproteobacteria, 2nd ed. Springer, New York, N.Y., USA.Google Scholar
  15. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. pp. 607–654. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.), Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, D.C., USA.Google Scholar
  16. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28, 2731–2739.PubMedCrossRefGoogle Scholar
  17. Young, C.C., K⇐pfer, P., Ho, M.J., Busse, H.J., Huber, B.E., Arun, A.B., Shen, F.T., Lai, W.A., and Rekha, P.D. 2007. Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. Int. J. Syst. Evol. Microbiol.57, 2790–2793.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. -Ram Kim
    • 1
  • Siwon Lee
    • 1
  • Kyudong Han
    • 2
  • Tae-Young Ahn
    • 1
  1. 1.Department of MicrobiologyDankook UniversityCheonanRepublic of Korea
  2. 2.Department of Nanobiomedical Science and WCU Research CenterDankook UniversityCheonanRepublic of Korea

Personalised recommendations