Advertisement

The Journal of Microbiology

, Volume 49, Issue 6, pp 1044–1049 | Cite as

Leucobacter kyeonggiensis sp. nov., a new species isolated from dye waste water

  • Hyun-jung Kim
  • Sang-Seob LeeEmail author
Note

Abstract

A Gram-positive, aerobic, non-motile bacterium designated F3-P9T, was isolated from dye waste water in Korea and was characterized using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that strain F3-P9T belongs to genus Leucobacter. The 16S rRNA gene sequence similarities among strain F3-P9T and validated representatives of the genus Leucobacter ranged from 95.9–97.4%. Strain F3-P9T exhibited DNA-DNA relatedness values below 48% with respect to Leucobacter species. The G+C content of the genomic DNA was 67.5 mol%. F3-P9T contained MK-11 as the major respiratory quinone. The major fatty acids were anteiso-C15:0 (48.5%), anteiso-C17:0 (22.7%), and iso-C16:0 (14.5%). The peptidoglycan was composed of L-2,4-diaminbutyric acid, alanine, glycine, and glutamic acid. The polar lipid profile showed a major amount of diphosphatidylglycerol (DPG), a moderate amount of phosphatidylglycerol (PG), and two unknown glycolipids. On the basis of its phenotypic and genotypic properties and its phylogenetic distinctiveness, strain F3-P9T (KEMC 211-128T =KACC 16572T =JCM 17539T) should be classified in the genus Leucobacter as the type strain of a novel species, for which the name Leucobacter kyeonggiensis sp. nov. is proposed.

Keywords

Taxonomy 16S rRNA gene Microbacteriaceae Leucobacter kyeonggiensis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2011_1548_MOESM1_ESM.pdf (1.5 mb)
Supplementary material, approximately 1.50 MB.

References

  1. Atlas, R.M. 1993. Handbook of Microbiological Media. In L.C. Parks (ed.), CRC Press, Boca Raton, Florida, USA.Google Scholar
  2. Behrendt, A.U. and P. Schumann. 2008. Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum. Int. J. Syst. Evol. Microbiol 58, 2574–2578.PubMedCrossRefGoogle Scholar
  3. Brinkman, F.S., I. Wan, R.E. Hancock, A.M. Rose, and S.J. Jones. 2001. PhyloBLAST: facilitating phylogenetic analysis of BLAST results. Bioinformatics 17, 385–387.PubMedCrossRefGoogle Scholar
  4. Cappuccino, J.G. and N. Sherman. 2002. Microbiology: a Laboratory Manual, 6th ed. Benjamin Cummings, San Francisco, USA.Google Scholar
  5. Choi, J.H., H.Y. Jung, H.S. Kim, and H.G. Cho. 2000. PhyloDraw: a phylogenetic tree drawing system. Bioinformatics 16, 1056–1058.PubMedCrossRefGoogle Scholar
  6. Collins, M.D. and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45, 316–354.PubMedGoogle Scholar
  7. Doetsch, R.N. 1981. Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, p. 21–33. P. Gerhardt, R.G.E. Murray, R.N. Costilow, E.W. Nester, W.A. Wood, N.R. Krieg and G.H. Phillips (eds.), American Society for Microbiology, Washington, D.C., USA.Google Scholar
  8. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39, 224–229.Google Scholar
  9. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  10. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  11. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98.Google Scholar
  12. Halpern, M., T. Shaked, R. Pukall, and P. Schumann. 2009. Leucobacter chironomisp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int. J. Syst. Evol. Microbiol 59, 665–670.PubMedCrossRefGoogle Scholar
  13. Kim, M.K., W.-T. Im, H. Ohta, M. Lee, and S.-T. Lee. 2005. Sphingopyxis granuli sp. nov., a β-glucosidase producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J. Microbiol. 43, 152–157.PubMedGoogle Scholar
  14. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.Google Scholar
  15. Komagata, K., and K. Suzuki. 1987. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–203.CrossRefGoogle Scholar
  16. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Brief. Bioinform. 5, 150–163.PubMedCrossRefGoogle Scholar
  17. Lin, Y.C., K. Uemori, D.A. Briel, V. Arunpairojana, and A. Yokota. 2004. Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int. J. syst. Evol. Microbiol. 54, 1669–1676.PubMedCrossRefGoogle Scholar
  18. Martin, E., N. Lodders, U. Jacket, P. Schumann, and P. Kampfer. 2010. Leucobacter aerolatus sp. nov., from the air of a duck barn. Int. J, Syst. Evol. Microbiol. 60, 2838–2842.CrossRefGoogle Scholar
  19. Mesbah, M., U. Premachandran, and W.B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.CrossRefGoogle Scholar
  20. Minnikin, D.E., A.G. O’Donnell, M. Goodfellow, G. Anderson, M. Athalye, A. Schaal, and J.H. Parlett. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  21. Morais, P.V., R. Francisco, R. Branco, A.P. Chung, and M.S. da Costa. 2004. Leucobacter chromiireducens sp. nov., and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst. Appl. Microbiol. 27, 646–652.PubMedCrossRefGoogle Scholar
  22. Morais, P.V., C. Paulo, R. Francisco, R. Branco, A.P. Chung and M.S. da Costa. 2006. Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst. Appl. Microbiol. 29, 414–421.PubMedCrossRefGoogle Scholar
  23. Muir, R.E., and M.W. Tan. 2007. Leucobacter chromiireducens subsp. solipctus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens. Int. J. Syst. Evol. Microbiol. 57, 2770–2776.PubMedCrossRefGoogle Scholar
  24. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Bio. Evol. 4, 406–425.Google Scholar
  25. Sasser, M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.Google Scholar
  26. Schleifer, K.H. and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477.PubMedGoogle Scholar
  27. Shin, N.R., M.S. Kim, M.J. Jung, S.W. Roh, Y.D. Nam, E.J. Park, and J.W., Bae. 2011. Leucobacter celer sp. nov., isolated from korean fermented seafood. Int. J. Syst. Evol. Microbiol. 61, 2353–2357.PubMedCrossRefGoogle Scholar
  28. Shin, Y.K., J.-S. Lee, C.O. Chun, H.-J. Kim, and Y.-H. Park. 1996. Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J. Microbiol. Biotechnol. 6, 68–69.Google Scholar
  29. Somvanshi, V.S., E. Lang, P. Schumann, R. Pukall, R.M. Kroppenstedt, S. Ganguly and E. Stackebandt. 2007. Leucobacter iarius sp. nov., in the family Microbacteriaceae. Int. J.Syst. Evol. Microbiol. 57, 682–686.PubMedCrossRefGoogle Scholar
  30. Sturm, G., J. Jacobs, C. Sproer, P. Schumann, and J. Gescher. 2011. Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int. J. Syst. Evol. Microbiol. 61, 956–960.Google Scholar
  31. Takeuchi, M., N. Weiss, P. Schumann, and A. Yokota. 1996. Leucobacter komagatae gen. nov., sp. nov., a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int. J. syst. Bacteriol. 46, 967–971.PubMedCrossRefGoogle Scholar
  32. Tamaoka, J. and K. Komagata. 1984. Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25, 125–128.CrossRefGoogle Scholar
  33. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.CrossRefGoogle Scholar
  34. Ue, H. 2011. Leucobacter exalbidus sp. nov., an actinobacterium isolated from a mixed culture from compost. J. Gen. Appl. Microbiol. 57, 27–33.PubMedCrossRefGoogle Scholar
  35. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray and et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Department of Biological EngineeringKyonggi UniversitySuwonRepublic of Korea

Personalised recommendations