Advertisement

The Journal of Microbiology

, Volume 49, Issue 3, pp 431–440 | Cite as

Identification of the genes involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85

  • Kyung-Don Kang
  • Yong Seok Cho
  • Ji Hye Song
  • Young Shik Park
  • Jae Yeon Lee
  • Kyo Yeol Hwang
  • Sang Ki Rhee
  • Ji Hyung Chung
  • Ohsuk Kwon
  • Su-Il Seong
Articles

Abstract

1-Deoxynojirimycin (DNJ), a D-glucose analogue with a nitrogen atom substituting for the ring oxygen, is a strong inhibitor of intestinal α-glucosidase. DNJ has several promising biological activities, including its antidiabetic, antitumor, and antiviral activities. Nevertheless, only limited amounts of DNJ are available because it can only be extracted from some higher plants, including the mulberry tree, or purified from the culture broth of several types of soil bacteria, such as Streptomyces sp. and Bacillus sp. In our previous study, a DNJ-producing bacterium, Bacillus subtilis MORI, was isolated from the traditional Korean fermented food Chungkookjang. In the present study, we report the identification of the DNJ biosynthetic genes in B. subtilis MORI 3K-85 strain, a DNJ-overproducing derivate of the B. subtilis MORI strain generated by γ-irradiation, xhe genomic DNA library of B. subtilis MORI 3K-85 was constructed in Escherichia coli, and clones showing α-glucosidase inhibition activity were selected. After DNA sequencing and a series of subcloning, we were able to identify a putative Operon which consists of gabT1, yktc1, and gutB1 genes predicted to encode putative transaminase, phosphatase, and oxidoreductase, respectively. When a recombinant plasmid containing this Operon sequence was transformed into an E. coli strain, the resulting transformant was able to produce DNJ into the culture medium. Our results indicate that the gabT1, yktc1, and gutB1 genes are involved in the DNJ biosynthetic pathway in B. subtilis MORI, suggesting the possibility of employing these genes to establish a large-scale microbial DNJ overproduction system through genetic engineering and process optimization.

Keywords

Bacillus subtilis MORI 3K-85 genomic DNA library screening 1-deoxynojirimycin (DNJ) α-glucosidase inhibitor gene cloning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, N., R.J. Nash, R.J. Molyneux, and G.W.J. Fleet. 2000. Sugarmimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron: Asymmetry 53, 1645–1680.CrossRefGoogle Scholar
  2. Asano, N., K. Oseki, E. Tomioka, H. Kizu, and K. Matsui. 1994. N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohyr. Res. 259, 243–255.CrossRefGoogle Scholar
  3. Asano, N., T. Yamashita, K. Yasuda, K. Ikeda, H. Kizu, Y. Kameda, A. Kato, R.J. Nash, H.S. Lee, and K.S. Ryu. 2001. Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx MORI L.). J. Agric. Food Chem. 49, 4208–4213.PubMedCrossRefGoogle Scholar
  4. Barbe, V., S. Cruveiller, F. Kunst, P. Lenoble, G. Meurice, A. Sekowska, D. Vallenet, and et al. 2009. From a consortium sequence to a unified sequence: The Bacillus subtilis 168 reference genome a decade later. Microbiology 155, 1758–1775.PubMedCrossRefGoogle Scholar
  5. Chen, X.H., A. Koumoutsi, R. Scholz, A. Eisenreich, K. Schneider, I. Heinemeyer, B. Morgenstern, and et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014.PubMedCrossRefGoogle Scholar
  6. Cho, Y.S., Y.S. Park, J.Y. Lee, K.D. Kang, K. Kim, K.Y. Hwang, and S.I. Seong. 2008. Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 37, 1401–1407.CrossRefGoogle Scholar
  7. Dower, W.J., J.F. Miller, and C.W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electropolation. Nucleic Acids Res. 16, 6127–6145.PubMedCrossRefGoogle Scholar
  8. Dwek, R.A., T.D. Butters, F.M. Platt, and N. Zitzmann. 2002. Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug Discov. 1, 65–75.PubMedCrossRefGoogle Scholar
  9. Dykxhoorn, D.M., R. St. Pierre, and T. Linn. 1996. A set of compatible tac promoter expression vectors. Gene 177, 133–136.PubMedCrossRefGoogle Scholar
  10. Ezure, Y., S. Maruo, K. Miyazaki, and M. Kawamata. 1985. Moranoline (1-deoxynojirimycin) fermentation and its improvement. Agric. Biol. Chem. 49, 1119–1125.Google Scholar
  11. Fleet, G.W.J., A. Karpas, R.A. Dwek, L.E. Fellows, A.S. Tyms, S. Petursson, S.K. Namgoong, and et al. 1988. Inhibition of HIV replication by amino-sugar derivatives. FEBS Lett. 237, 128–132.PubMedCrossRefGoogle Scholar
  12. Fujita, Y. 2009. Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci. Biotechnol. Biochem. 73, 245–259.PubMedCrossRefGoogle Scholar
  13. Gruters, R.A., J.J. Neefjes, M. tersmette, R.E.Y.D.G.A. Tulp, H.G. Huisman, F. Miedema, and H.L. Ploegh. 1987. Interference with HIV-induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase. Nature 330, 74–77.PubMedCrossRefGoogle Scholar
  14. Hardick, D.J. and D.W. Hutchinson. 1993. The biosynthesis of 1-deoxynojirimycin in Bacillus subtilis var niger. Tetrahedron 49, 6707–6716.CrossRefGoogle Scholar
  15. Hardick, D.J., D.W. Hutchinson, S.J. Trew, and E.M.H. Wellington. 1991. The biosynthesis of deoxynojirimycin and deoxymannonojirimycin in Streptomyces subrutilus. J. Chem. Soc. Chem. Commun. 10, 729–730.CrossRefGoogle Scholar
  16. Hardick, D.J., D.W. Hutchinson, S.J. Trew, and E.M.H. Wellington. 1992. Glucose is a precursor of 1-deoxynojirimycin and 1-deoxymannonojirimycin in Streptomyces subrutilus. Tetrahedron 48, 6285–6296.CrossRefGoogle Scholar
  17. Hwang, K.Y., Y.H. Kim, Y.S. Cho, Y.S. Park, J.Y. Lee, K.-D. Kang, K. Kim, D.K. Joo, D.K. Ahn, and S.I. Seong. 2008. Hypoglycemic effect of fermented soybean culture mixed with mulberry leaves on neonatal streptozotocin-induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 37, 452–458.CrossRefGoogle Scholar
  18. Jacob, J.R., K. Mansfield, J.E. You, B.C. Tennant, and Y.H. Kim. 2007. Natural iminosugar derivatives of 1-deoxynojirimycin inhibit glycosylation of hepatitis viral envelope proteins. J. Microbiol. 45, 431–440.PubMedGoogle Scholar
  19. Jang, M.J. and S.J. Rhee. 2004. Hypoglycemic effects of pills made of mulberry leaves and silkworm powder in streptozotocin-induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 33, 1611–1617.CrossRefGoogle Scholar
  20. Karpas, A., G.W.J. Fleet, R.A. Dwek, S. Petursson, S.K. Namgoong, N.G. Ramsden, G.S. Jacob, and T.W. Rademacher. 1988. Aminosugar derivatives as potential anti-human immunodeficiency virus agents. Proc. Natl. Acad. Sci. USA 85, 9229–9233.PubMedCrossRefGoogle Scholar
  21. Kim, J.W., S.U. Kim, H.S. Lee, I. Kim, M.Y. Ahn, and K.S. Ryu. 2003. Determination of 1-deoxynojirmycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. J. Chromatogr. A. 1002, 93–99.PubMedCrossRefGoogle Scholar
  22. Kim, H.S., J.Y. Lee, K.Y. Hwang, Y.S. Cho, Y.S. Park, K.D. Kang, and S.I. Seong. 2011. Isolation and identification of a Bacillus sp. producing α-glycosidase inhibitor 1-deoxynojirimycin. Kor. J. Microbiol. Biotechnol. 39, 49–55.Google Scholar
  23. Kong, W.H., S.H. Oh, Y.R. Ahn, K.W. Kim, J.H. Kim, and S.W. Seo. 2008. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. J. Agric. Food Chem. 56, 2613–2619.PubMedCrossRefGoogle Scholar
  24. Mehta, A., N. Zitzmann, P.M. Rudd, T.M. Block, and R.A. Dwek. 1998. α-Glucosidase inhibitors as potential broad anti-viral agents. FEBS Lett. 430, 17–22.PubMedCrossRefGoogle Scholar
  25. Nakagawa, K., K. Ogawa, O. Higuchi, T. Kimura, T. Miyazawa, and M. Hori. 2010. Determination of iminosugars in mulberry leaves and silkworms using hydrophilic interaction chromatography-tandem mass spectrometry. Anal. Biochem. 404, 217–222.PubMedCrossRefGoogle Scholar
  26. Naville, M., A. Ghuillot-Gaudeffroy, A. Marchais, and D. Gautheret. 2011. ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 8, 11–13.PubMedCrossRefGoogle Scholar
  27. Paek, N.S., D.J. Kang, Y.J. Choi, J.J. Lee, T.H. Kim, and K.W. Kim. 1997. Production of 1-deoxynojirimycin by Streptomyces sp. SID9135. J. Microbiol. Biotechnol. 7, 262–266.Google Scholar
  28. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2th ed. Cold Spring Harbor Laboratory Press, New York, NY, USA.Google Scholar
  29. Schedel, M. 2008. Regioselective oxidation of aminosorbitol with gluconobacter oxydans, key reaction in the industrial 1-deoxynojirimycin synthesis, pp. 296–307. In H.J. Rehm and G. Reed (eds.), Biotechnology: Biotransformations II, Volume 8b, Second Edition. Wiley-VCH Verlag GmbH, Weinheim, Germany.Google Scholar
  30. Scofield, A.M., L.E. Fellow, R.J. Nash, and G.W.J. Fleet. 1986. Inhibition of mammalian digestive disaccharidases by polyhydroxy alkaloids. Life Sci. 39, 645–650.PubMedCrossRefGoogle Scholar
  31. Shibano, M., Y. Fujimoto, K. Kushino, G. Kusano, and K. Baba. 2004. Biosynthesis of 1-deoxynojirimycin in Commelina communis: a difference between the microorganisms and plants. Phytochemistry 65, 2661–2665.PubMedCrossRefGoogle Scholar
  32. Sierro, N., Y. Makita, M.J.L. de Hoon, and K. Nakai. 2008. DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res. 36 (Database issue), D93–D96.PubMedCrossRefGoogle Scholar
  33. Stein, D.C., L.K. Kopec, R.E. Yasbin, and F.E. Young. 1984. Characterization of Bacillus subtilis DSM704 and its production of 1-deoxynojirimycin. Appl. Environ. Microbiol. 48, 280–284.PubMedGoogle Scholar
  34. Watson, A.A., G.W.G. Fleet, N. Asano, R.J Molyneux, and R.J. Nash. 2001. Polyhydroxylated alkaloids-natural occurrence and therapeutic applications. Phytochem. 56, 265–295.CrossRefGoogle Scholar
  35. Watson, A.A. and R.J. Nash. 2000. Water soluble bioactive alkaloids, pp. 169–204. In S.K. Wrigley and M.A. Hayes (eds.), Biodiversity-new leads for the pharmaceutical and agrochemical industries. Cambridge, United Kingdom Royal Society of Chemistry.Google Scholar
  36. Yoshikuni, Y. 1988. Inhibition of intestinal α-glycosidase activity and postprandial hyperglycemia by moranoline and its N-alkyl derivatives. Agric. Biol. Chem. 52, 121–128.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kyung-Don Kang
    • 1
  • Yong Seok Cho
    • 1
    • 2
  • Ji Hye Song
    • 3
    • 4
  • Young Shik Park
    • 1
  • Jae Yeon Lee
    • 1
  • Kyo Yeol Hwang
    • 1
  • Sang Ki Rhee
    • 4
  • Ji Hyung Chung
    • 5
  • Ohsuk Kwon
    • 3
    • 6
  • Su-Il Seong
    • 1
    • 2
  1. 1.R&D center for Life ScienceBiotopia Co., Ltd. ChuncheonGangwon-doRepublic of Korea
  2. 2.Department of Life ScienceThe University of SuwonGyeonggi-doRepublic of Korea
  3. 3.Integrative Omics Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
  4. 4.Department of Medicinal BiotechnologySoonchunhyang UniversityChungnamRepublic of Korea
  5. 5.Cardiovascular Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
  6. 6.Systems Biotechnology Program, School of ScienceUniversity of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations