rRNASelector: A computer program for selecting ribosomal RNA encoding sequences from metagenomic and metatranscriptomic shotgun libraries

  • Jae-Hak Lee
  • Hana Yi
  • Jongsik ChunEmail author


Metagenomic and metatranscriptomic shotgun sequencing techniques are gaining popularity as more cost-effective next-generation sequencing technologies become commercially available. The initial stage of bioinfor-matic analysis generally involves the identification of phylogenetic markers such as ribosomal RNA genes. The sequencing reads that do not code for rRNA can then be used for protein-based analysis. Hidden Markov model is a well-known method for pattern recognition. Hidden Markov models that are trained on well-curated rRNA sequence databases have been successfully used to identify DNA sequence coding for rRNAs in pro-karyotes. Here, we introduce rRNASelector, which is a computer program for selecting rRNA genes from massive metagenomic and metatranscriptomic sequences using hidden Markov models. The program successfully identified prokaryotic 5S, 26S, and 23S rRNA genes from Roche 454 FLX Titanium-based metagenomic and metatranscriptomic libraries. The rRNASelector program is available at


rRNASelector metagenomics metatranscriptomics HMMER rRNA computer program 


  1. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. Eztaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal rna gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.PubMedCrossRefGoogle Scholar
  2. Eddy, S.R. 1998. Profile hidden markov models. Bioinformatics 14, 755–763.PubMedCrossRefGoogle Scholar
  3. Eddy, S.R. 2009. A new generation of homology search tools based on probabilistic inference. Genome Inform. 23, 205–211.PubMedCrossRefGoogle Scholar
  4. Glass, E.M., J. Wilkening, A. Wilke, D. Antonopoulos, and F. Meyer. 2010. Using the metagenomics rast server (mg-rast) for analyzing shotgun metagenomes. Cold Spring Harb. Protoc. 2010, pdb prot5368.Google Scholar
  5. Handelsman, J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685.PubMedCrossRefGoogle Scholar
  6. Handelsman, J., M.R. Rondon, S.F. Brady, J. Clardy, and R.M. Goodman. 1998. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chem. Biol. 5, R245–249.PubMedCrossRefGoogle Scholar
  7. Huang, Y., P. Gilna, and W. Li. 2009. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25, 1338–1340.PubMedCrossRefGoogle Scholar
  8. Huson, D.H., A.F. Auch, J. Qi, and S.C. Schuster. 2007. Megan analysis of metagenomic data. Genome Res. 17, 377–386.PubMedCrossRefGoogle Scholar
  9. Lagesen, K., P. Hallin, E.A. Rodland, H.H. Staerfeldt, T. Rognes, and D.W. Ussery. 2007. Rnammer: Consistent and rapid annotation of ribosomal rna genes. Nucleic Acids Res. 35, 3100–3108.PubMedCrossRefGoogle Scholar
  10. Mardis, E.R. 2008. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 9, 387–402.PubMedCrossRefGoogle Scholar
  11. Margulies, M., M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka, and et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.PubMedGoogle Scholar
  12. Meyer, F., D. Paarmann, M. D-Souza, R. Olson, E.M. Glass, M. Kubal, T. Paczian, and et al. 2008. The metagenomics rast server — a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386.PubMedCrossRefGoogle Scholar
  13. Polz, M.F. and C.M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64, 3724–3730.PubMedGoogle Scholar
  14. Qin, J., R. Li, J. Raes, M. Arumugam, K.S. Burgdorf, C. Manichanh, T. Nielsen, and et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.PubMedCrossRefGoogle Scholar
  15. Rondon, M.R., P.R. August, A.D. Bettermann, S.F. Brady, T.H. Grossman, M.R. Liles, K.A. Loiacono, and et al. 2000. Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541–2547.PubMedCrossRefGoogle Scholar
  16. Schmidt, T.M., E.F. DeLong, and N.R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378.PubMedGoogle Scholar
  17. Szymanski, M., M.Z. Barciszewska, V.A. Erdmann, and J. Barciszewski. 2002. 5S ribosomal RNA database. Nucleic Acids Res. 30, 176–178.PubMedCrossRefGoogle Scholar
  18. Valouev, A., J. Ichikawa, T. Tonthat, J. Stuart, S. Ranade, H. Peckham, K. Zeng, and et al. 2008. A high-resolution, nucleosome position map of c. Elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063.PubMedCrossRefGoogle Scholar
  19. Venter, J.C., K. Remington, J.F. Heidelberg, A.L. Halpern, D. Rusch, J.A. Eisen, D. Wu, and et al. 2004. Environmental genome shotgun sequencing of the sargasso sea. Science 304, 66–74.PubMedCrossRefGoogle Scholar
  20. von Wintzingerode, F., U.B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213–229.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Interdisciplinary Graduate Program in BioinformaticsSeoul National UniversitySeoulRepublic of Korea
  2. 2.Institute of Molecular Biology and GeneticsSeoul National UniversitySeoulRepublic of Korea
  3. 3.School of Biological SciencesSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations