Advertisement

The Journal of Microbiology

, Volume 49, Issue 6, pp 1022–1026 | Cite as

Gramella jeungdoensis sp. nov., isolated from a solar saltern in Korea

  • Yochan Joung
  • Haneul Kim
  • Taeyong Jang
  • Tae-Seok Ahn
  • Kiseong Joh
Note

Abstract

A non-motile, Gram-stain-negative, yellow pigmented, rod-shaped bacterium, strain HMD3159T, was isolated from a solar saltern in Korea. The major fatty acids were iso-C15:0 (26.3%), iso-C17:0 3OH (12.1%), iso-C16:0 (12.0%), summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c; 11.0%) and summed feature 9 (iso-C17:1 ω9c and/or 10-methyl C16:0; 10.0%). The major respiratory quinone was MK-6. The DNA G+C content was 40.9 mol%. The phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD3159T formed a lineage within the genus Gramella and closely related to Gramella gaetbulicola (95.5% sequence similarity), Gramella portivictoriae (94.9%), Gramella echinicola (94.6%), and Gramella marina (93.6%). On the basis of the evidence presented in this study, strain HMD3159T represents a novel species of the genus Gramella, for which the name Gramella jeungdoensis sp. nov., is proposed. The type strain is HMD3159T (=KCTC 32123T =CECT 7683T).

Keywords

Gramella sp. nov. 16S rRNA similarity saltern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardet, J.F., M. Vancanneyt, O. Matte-Tailliez, L. Grisez, P. Tailliez, C. Bizet, M. Nowakowski, B. Kerouault, and J. Swings. 2005. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst. Appl. Microbiol. 28, 640–660.PubMedCrossRefGoogle Scholar
  2. Cho, S., S. Chae, M. Cho, T. Kim, S. Choi, J. Han, Y. Kim, Y. Joung, K. Joh, O.I. Nedashkovskaya, and S.B. Kim. 2011. Gramella gaetbulicola sp. nov., a member of the family Flavobacteriaceae isolated from foreshore soil. Int. J. Syst. Evol. Microbiol. 61, 2654–2658.Google Scholar
  3. Cho, J.C. and S.J. Giovannoni. 2003. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the alpha-Proteobacteria. Int. J. Syst. Evol. Microbiol. 53, 1031–1036.PubMedCrossRefGoogle Scholar
  4. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.PubMedCrossRefGoogle Scholar
  5. Collins, M.D. 1985. 11 Analysis of isoprenoid quinones. In Methods in Microbiology, p. 329–366. T. Bergan (ed.), Academic Press, London, UK.Google Scholar
  6. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.PubMedCrossRefGoogle Scholar
  7. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783.CrossRefGoogle Scholar
  8. Fitch, W.M. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20, 406.CrossRefGoogle Scholar
  9. Lau, S.C., M.M. Tsoi, X. Li, I. Plakhotnikova, S. Dobretsov, P.K. Wong, and P.Y. Qian. 2005. Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 55, 2497–2500.Google Scholar
  10. MacFaddin, J.F. 1980 Biochemical Tests for Identification of Medical Bacteria, 2nd ed. Lippincott Williams & Wilkins Co., Baltimore, Maryland, USA.Google Scholar
  11. Mesbah, M. and W.B. Whitman. 1989. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J. Chromatog. 479, 297–306.CrossRefGoogle Scholar
  12. Minnikin, D.E., A.G. O’Donnell, M. Goodfellow, G. Alderson, M. Athalye, A. Schaal, and J.H. Parlett. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  13. Nedashkovskaya, O.I., S.B. Kim, and K.S. Bae. 2010. Gramella marina sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int. J. Syst. Evol. Microbiol. Article in press.Google Scholar
  14. Nedashkovskaya, O.I., S.B. Kim, A.M. Lysenko, G.M. Frolova, V.V. Mikhailov, K.S. Bae, D.H. Lee, and I.S. Kim. 2005. Gramella echinicola gen. nov., sp. nov., a novel halophilic bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int. J. Syst. Evol. Microbiol. 55, 391–394.PubMedCrossRefGoogle Scholar
  15. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  16. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.PubMedCrossRefGoogle Scholar
  17. Wayne, L.G., D.J. Brenner, R.R. Colwell, and O. Grimont. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int. J. Syst. Evol. Microbiol. 37, 463–464.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Yochan Joung
    • 1
  • Haneul Kim
    • 1
  • Taeyong Jang
    • 1
  • Tae-Seok Ahn
    • 2
  • Kiseong Joh
    • 1
  1. 1.Department of Bioscience and BiotechnologyHankuk University of Foreign StudiesGyeonggiRepublic of Korea
  2. 2.Departement of Environmental ScienceKangwon National UniversityChuncheonRepublic of Korea

Personalised recommendations