The Journal of Microbiology

, Volume 49, Issue 6, pp 935–941 | Cite as

Identification, origin, and evolution of leaf nodulating symbionts of Sericanthe (Rubiaceae)

  • Benny Lemaire
  • Elmar Robbrecht
  • Braam van Wyk
  • Sandra Van Oevelen
  • Brecht Verstraete
  • Els Prinsen
  • Erik Smets
  • Steven Dessein
Articles

Abstract

Bacterial leaf symbiosis is an intimate association between bacteria and plants in which endosymbionts are housed within leaf nodules. This phenomenon has been reported in three genera of Rubiaceae (Pavetta, Psychotria, and Sericanthe), but the bacterial partner has only been identified in Psychotria and Pavetta. Here we report the identification of symbiotic bacteria in two leaf nodulating Sericanthe species. Using 16S rRNA data and common housekeeping genetic markers (recA and gyrB) we studied the phylogenetic relationships of bacterial endosymbionts in Rubiaceae. Endosymbionts of leaf nodulating Rubiaceae were found to be closely related and were placed as a monophyletic group within the genus Burkholderia (β-Proteobacteria). The phylogenetic analyses revealed a pattern of strict host specificity and placed the two investigated endosymbionts at two distinct positions in the topology of the tree, suggesting at least two different evolutionary origins. The degree of sequence divergence between the Sericanthe endosymbionts and their relatives was large enough to propose the Sericanthe endosymbionts as new species (‘Candidatus Burkholderia andongensis’ and ‘Candidatus Burkholderia petitii’). In a second part of this study, the pylogenetic relationships among nodulating and non-nodulating Sericanthe species were investigated using sequence data from six chloroplast regions (rps16, trnG, trnL-trnF, petD, petA-psbJ, and atpI-atpH). Overall, genetic variation among the plastid markers was insufficient to enable phylogenetic estimation. However, our results could not rule out the possibility that bacterial leaf symbiosis originated once in a common ancestor of the Sericanthe species.

Keywords

Burkholderia endosymbionts bacterial leaf nodulation Sericanthe Rubiaceae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2011_1163_MOESM1_ESM.pdf (985 kb)
Supplementary material, approximately 985 KB.

References

  1. Andersson, L. 2002. Relationships and generic circumscriptions in the Psychotria complex (Rubiaceae, Psychotrieae). Syst. Geogr. Pl. 72, 167–202.Google Scholar
  2. Bremekamp, C.E.B. 1933. The bacteriophilous species of Psychotria. Lond. J. Bot. 71, 271–281.Google Scholar
  3. Bromham, L. 2009. Why do species vary in their rate of molecular evolution? Biol. Lett. 5, 401–404.PubMedCrossRefGoogle Scholar
  4. Davis, A.P., M. Chester, O. Maurin, and M. Fay. 2007. Searching for the relatives of Coffea (Rubiaceae, Ixoroideae): the circumscription and phylogeny of Coffeeae based on plastid sequence data and morphology. Am. J. Bot. 94, 313–329.PubMedCrossRefGoogle Scholar
  5. Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.PubMedCrossRefGoogle Scholar
  6. Gordon, J.F. 1963. The nature and distribution within the plant of the bacteria associated with certain leaf-nodulated species of the families Myrsinaceae and Rubiaceae, p. 370. Thesis. Univ. London.Google Scholar
  7. Huelsenbeck, J.P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.PubMedCrossRefGoogle Scholar
  8. Lemaire B., P. de Block, S. van Oevelen, B. Verstraete, E. Smets, E. Prinsen, and S. Dessein. 2011. Identification of the bacterial endosymbionts in leaf nodulating Pavetta species (Rubiaceae). Int. J. Syst. Evol. Microbiol. (in press).Google Scholar
  9. Maddison, D.R. and W.P. Maddison. 2001. MacClade 4: Analysis of phylogeny and character evolution, version 4.01. Sinauer Associates, Sunderland, Massachusetts, USA.Google Scholar
  10. Miller, I.M. 1990. Bacterial leaf nodule symbiosis. Adv. Bot. Res. 17, 163–243.CrossRefGoogle Scholar
  11. Murray, R.G.E. and E. Stackebrandt. 1995. Taxonomic note: implementation of the provisional status Candidatus for incompletely described prokaryotes. Int. J. Syst. Bacteriol. 45, 186–187.PubMedCrossRefGoogle Scholar
  12. Payne, G.W., P. Vandamme, S.H. Morgan, J.J. LiPuma, T. Coeyne, A.J. Weightman, T.H. Jones, and E. Mahenthiralingam. 2005. Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl. Environ. Microbiol. 71, 3917–3927.PubMedCrossRefGoogle Scholar
  13. Posada, D. and K.A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.PubMedCrossRefGoogle Scholar
  14. Rambaut, A. and A.J. Drummond. 2007. Tracer v1http://evolve.zoo.ox.ac.uk/software.html.
  15. Robbrecht, E. 1978a. Sericanthe, a new African genus of Rubiaceae (Coffeeae). Bull. Nat. Plantentuin Belg. 48, 3–78.CrossRefGoogle Scholar
  16. Robbrecht, E. 1978b. Rubiaceae. Distr. Pl. Afr. 13: map 406–429.Google Scholar
  17. Robbrecht, E. 1981. Studies in tropical African Rubiaceae (I). Bull. Nat. Plantentuin Belg. 51, 165–189.CrossRefGoogle Scholar
  18. Robbrecht, E. and J.F. Manen. 2006. The major evolutionary lineages of the coffee family (Rubiaceae, angiosperms). Combined analysis (nDNA and cpDNA) to infer the position of Coptosapelta and Luculia, and supertree construction based on rbcL, rps16, trnL-trnF and atpB-rbcL data. A new classification in two subfamilies, Cinchonoideae and Rubioideae. Syst. Geogr. Pl. 76, 85–146.Google Scholar
  19. Ronquist, F. and J.P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.PubMedCrossRefGoogle Scholar
  20. Simmons, M.P. and H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381.PubMedCrossRefGoogle Scholar
  21. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.PubMedCrossRefGoogle Scholar
  22. Tabacchioni, S., L. Ferri, G. Manno, M. Mentasti, P. Cocchi, S. Campana, N. Ravenni, and et al. 2008. Use of the gyrB gene to discriminate among species of the Burkholderia cepacia complex. FEMS Microbiol. Lett. 281, 175–182.PubMedCrossRefGoogle Scholar
  23. Tel-Zur, N., S. Abbo, D. Mylaboski, and Y. Mizrahi. 1999. Modified CTAB procedure for DNA isolation from epiphytic cacti of the genus Hylocereus and Selenicerus (Cactaceae). Plant Mol. Biol. Rep. 17, 249–254.CrossRefGoogle Scholar
  24. Tosh, J., A.P. Davis, S. Dessein, P. de Block, S. Huysmans, M.F. Fay, E. Smets, and E. Robbrecht. 2009. Phylogeny of Tricalysia (Rubiaceae) and its relationships with allied genera based on plastid DNA data: resurrection of the genus Empogona. Ann. Mossouri. Bot. Gard. 96, 194–213.CrossRefGoogle Scholar
  25. van Hove, C. 1972. Structure and initiation of nodules in the leaves of Neorosea andongensis (Hiern) N. Hallé. Ann. Bot. 36, 259–262.Google Scholar
  26. van Oevelen, S., R. de Wachter, P. Vandamme, E. Robbrecht, and E. Prinsen. 2002. Identification of the bacterial endosymbionts in leaf galls of Psychotria (Rubiaceae, angiosperms) and proposal of’ Candidatus Burkholderia kirkii’ sp. nov. Int. J. Syst. Evol. Microbiol. 52, 2023–2027.CrossRefGoogle Scholar
  27. van Oevelen, S., R. De Wachter, P. Vandamme, E. Robbrecht, and E. Prinsen. 2004.’ Candidatus Burkholderia calva’ and’ Candidatus Burkholderia nigropunctata’ as leaf gall endosymbionts of African Psychotria. Int. J. Syst. Evol. Microbiol. 54, 2237–2239.PubMedCrossRefGoogle Scholar
  28. van Oevelen, S., E. Prinsen, R. de Wachter, and E. Robbrecht. 2001. The taxonomic value of bacterial symbiont identification in African Psychotria (Rubiaceae). Syst. Geogr. Pl. 71, 557–563.CrossRefGoogle Scholar
  29. Werle, E., C. Schneider, M. Renner, M. Volker, and W. Fiehn. 1994. Convenient single step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res. 22, 4354–4355.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Benny Lemaire
    • 1
  • Elmar Robbrecht
    • 2
  • Braam van Wyk
    • 3
  • Sandra Van Oevelen
    • 4
  • Brecht Verstraete
    • 1
  • Els Prinsen
    • 4
  • Erik Smets
    • 1
    • 5
    • 6
  • Steven Dessein
    • 2
  1. 1.Laboratory of Plant SystematicsK.U.LeuvenLeuvenBelgium
  2. 2.National Botanic Garden of BelgiumMeiseBelgium
  3. 3.H.G.W.J. Schweickerdt HerbariumUniversity of PretoriaPretoriaSouth Africa
  4. 4.Laboratory of Plant Biochemistry and PhysiologyUniversity of AntwerpAntwerpBelgium
  5. 5.Netherlands Centre for Biodiversity NaturalisLeidenthe Netherlands
  6. 6.National Herbarium of the NetherlandsLeiden UniversityLeidenthe Netherlands

Personalised recommendations