Advertisement

The Journal of Microbiology

, Volume 49, Issue 6, pp 942–949 | Cite as

Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus

  • Rui Ding
  • Xue-Chang Wu
  • Chao-Dong Qian
  • Yi Teng
  • Ou Li
  • Zha-Jun Zhan
  • Yu-Hua Zhao
Articles

Abstract

Two lipopeptide antibiotics, pelgipeptins C and D, were isolated from Paenibacillus elgii B69 strain. The molecular masses of the two compounds were both determined to be 1,086 Da. Mass-spectrometry, amino acid analysis and NMR spectroscopy indicated that pelgipeptin C was the same compound as BMY-28160, while pelgipeptin D was identified as a new antibiotic of the polypeptin family. These two peptides were active against all the tested microorganisms, including antibiotic-resistant pathogenic bacterial strains such as methicillin-resistant Staphylococcus aureus (MRSA). Time-kill assays demonstrated that pelgipeptin D exhibited rapid and effective bactericidal action against MRSA at 4×MIC. Based on acute toxicity test, the intraperitoneal LD50 value of pelgipeptin D was slightly higher than that of the structurally related antimicrobial agent polymyxin B. Pelgipeptins are highly potent antibacterial and antifungal agents, particularly against MRSA, and warrant further investigation as possible therapeutic agents for bacteria infections resistant to currently available antibiotics.

Keywords

Paenibacillus elgii polypeptins pelgipeptins lipopeptide antibiotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araújo da Silva, K., J. Salles, L. Seldin, and J. van Elsas. 2003. Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. In the maize rhizosphere. J. Microbiol. Methods 54, 213–231.CrossRefGoogle Scholar
  2. Ash, C., F. Priest, and M. Collins. 1993. Molecular identification of rRNA group 3 Bacilli (ash, farrow, wallbanks and collins) using a PCR probe test. Antonie van Leeuwenhoek. 64, 253–260.PubMedCrossRefGoogle Scholar
  3. Chen, L., N. Wang, X. Wang, J. Hu, and S. Wang. 2010. Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour. Technol. 101, 8822–8827.PubMedCrossRefGoogle Scholar
  4. Choi, S.K., S.Y. Park, R. Kim, S.B. Kim, C.H. Lee, J.F. Kim, and S.H. Park. 2009. Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J. Bacteriol. 191, 3350–3358.PubMedCrossRefGoogle Scholar
  5. Fujii, K., K. Sivonen, T. Kashiwagi, K. Hirayama, and K. Harada. 1999. Nostophycin, a novel cyclic peptide from the toxic Cyanobacterium nostoc sp. 152. J. Org. Chem. 64, 5777–5782.CrossRefGoogle Scholar
  6. Gangolli, S.D., P. Simson, M.T. Lis, B. Cheng, R.F. Crampton, and D.M. Matthews. 1970. Amino acid and peptide uptake in protein absorption. Clin. Sci. 39, 18.Google Scholar
  7. Kim, P.I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and et al. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97, 942–949.PubMedCrossRefGoogle Scholar
  8. Kim, P.I., J. Ryu, Y. Kim, and Y. Chi. 2010. Production of biosurfactant lipopeptides iturin a, fengycin, and surfactin a from Bacillus subtilis CMB32 for control of colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20, 138–145.PubMedGoogle Scholar
  9. Klevens, R.M., M.A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L.H. Harrison, and et al. 2007. Invasive methicillin-resistant Staphylococcus aureus infections in the united states. JAMA. 298, 1763–1771.PubMedCrossRefGoogle Scholar
  10. Levine, D. 2006. Vancomycin: A history. Clin. Infect. Dis. 42, S5–12.PubMedCrossRefGoogle Scholar
  11. Li, J., P.K. Beatty, S. Shah, and S.E. Jensen. 2007. Use of PCR-targeted mutagenesis to disrupt production of fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa. Appl. Environ. Microbiol. 73, 3480–3489.PubMedCrossRefGoogle Scholar
  12. McKay, G.A., S. Beaulieu, F.F. Arhin, A. Belley, I. Sarmiento Jr, and G. Moeck. 2009. Time-kill kinetics of oritavancin and comparator agents against Staphylococcus aureus, Eenterococcus faecalis and Enterococcus faecium. J. Antimicrob. Chemother. 63, 1191–1199.PubMedCrossRefGoogle Scholar
  13. McVay, C.S. and R.D. Rolfe. 2000. In vitro and in vivo activities of nitazoxanide against Clostridium difficile. Antimicrob. Agents Chemother. 44, 2254–2258.PubMedCrossRefGoogle Scholar
  14. Moellering, R. Jr. 2006. Vancomycin: A 50-year reassessment. Clin. Infect Dis. 42, S3–4.PubMedCrossRefGoogle Scholar
  15. Muto, C., J. Jernigan, B. Ostrowsky, H. Richet, W. Jarvis, J. Boyce, and B. Farr. 2003. Shea guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus. Infect. Cont. Hosp. Ep. 24, 362–386.CrossRefGoogle Scholar
  16. Pirri, G., A. Giuliani, S. Nicoletto, L. Pizzuto, and A. Rinaldi. 2009. Lipopeptides as anti-infectives: A practical perspective. Cent. Eur. J. Biol. 4, 258–273.CrossRefGoogle Scholar
  17. Sogn, J.A. 1976. Structure of the peptide antibiotic polypeptin. J. Med. Chem. 19, 1228–1231.PubMedCrossRefGoogle Scholar
  18. Storm, D.R., K.S. Rosenthal, and P.E. Swanson. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46, 723–763.PubMedCrossRefGoogle Scholar
  19. Sugawara, K., M. Konishi, and H. Kawaguchi. 1984. BMY-28160, a new peptide antibiotic. J. Antibiot. 37, 1257–1259.PubMedGoogle Scholar
  20. Takeuchi, Y., A. Murai, Y. Takahara, and M. Kainosho. 1979. The structure of permetin a, a new polypeptin type antibiotic produced by Bacillus circulans. J. Antibiot. 32, 121–129.PubMedGoogle Scholar
  21. Thiericke, R. and J. Rohr. 1993. Biological variation of microbial metabolites by precursor-directed biosynthesis. Nat. Prod. Rep. 10, 265–289.PubMedCrossRefGoogle Scholar
  22. Wang, Z. and X. Liu. 2008. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. Using response surface methodology. Bioresour. Technol. 99, 8245–8251.PubMedCrossRefGoogle Scholar
  23. Weigel, L., D. Clewell, S. Gill, N. Clark, L. McDougal, S. Flannagan, J. Kolonay, and et al. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302, 1569.PubMedCrossRefGoogle Scholar
  24. Wu, X.C., X.B. Shen, R. Ding, C.D. Qian, H.H. Fang, and O. Li. 2010. Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiol. Lett. 320, 32–38.CrossRefGoogle Scholar
  25. Wu, X.C., C.D. Qian, H.H. Fang, Y.P. Wen, J.Y. Zhou, Z.J. Zhan, R. Ding, and et al. 2011. Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-b70 active against methicillin-resistant Staphylococcus aureus. Microb. Biotechnol. 4, 491–502.PubMedCrossRefGoogle Scholar
  26. Zhao, Z.H., Y.B. Ma, C. Dai, R.M. Zhao, S.R. Li, Y.L. Wu, Z.J. Cao, and W.X. Li. 2009. Imcroporin, a new cationic antimicrobial peptide from the venom of the scorpion Isometrus maculates. Antimicrob. Agents Chemother. 53, 3472–3477.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Rui Ding
    • 1
  • Xue-Chang Wu
    • 1
  • Chao-Dong Qian
    • 1
  • Yi Teng
    • 1
  • Ou Li
    • 1
  • Zha-Jun Zhan
    • 2
  • Yu-Hua Zhao
    • 1
  1. 1.Institute of Microbiology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province, P. R. China
  2. 2.College of Pharmaceutical ScienceZhejiang University of TechnologyHangzhouZhejiang Province, P. R. China

Personalised recommendations