Advertisement

The Journal of Microbiology

, Volume 49, Issue 5, pp 828–833 | Cite as

Functional analysis of SGR4635-induced enhancement of pigmented antibiotic production in Streptomyces lividans

  • Won-Jae Chi
  • Soon-Youl Lee
  • JaeHag LeeEmail author
Articles

Abstract

The Gram-positive mycelium-producing bacterium Streptomyces undergoes complex morphological differentiation after autolytic degradation of the vegetative mycelium. Cell-wall breakdown during growth stimulates cell development and secondary metabolite production by Streptomyces. N-acetylglucosamine (GlcNAc) produced by cell-wall lysis acts as a signal molecule, triggering the production of secondary metabolites in S. coelicolor A3(2). Here, we report that introduction of multiple copies of the GlcNAc-internalizing gene (sgr4635, encoding nagE2) of S. griseus activates actinorhodin and undecylprodigiosin production during the late growth of S. lividans in the absence of GlcNAc. Furthermore, the repressor-type transcriptional regulator DasR binds to two operator sites upstream of sgr4635. Our findings indicate that sgr4635 induces DasR-mediated antibiotic production by internalizing the GlcNAc accumulated from cell-wall lysis.

Keywords

Streptomyces antibiotic production N-acetylglucosamine transcriptional regulator DasR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley, S.D., K.F. Chater, A.M. Cerdeno-Tárraga, G.L. Challis, N.R. Thomson, K.D. James, D.E. Harris, and et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.PubMedCrossRefGoogle Scholar
  2. Bibb, M.J. 2005. Regulation of secondary metabolism in Streptomycetes. Curr. Opin. Microbiol. 8, 208–215.PubMedCrossRefGoogle Scholar
  3. Chater, K.F. and S. Horinouchi. 2003. Signaling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48, 9–15.PubMedCrossRefGoogle Scholar
  4. Chi, W.J., X.M. Jin, S.C. Jung, E.A. Oh, and S.K. Hong. 2011. Characterization of Sgr3394 produced only by the A-Factor-producing Streptomyces griseus IFO13350, not by the A-Factor deficient mutant HH1. J. Microbiol. 49, 155–160.PubMedCrossRefGoogle Scholar
  5. Colson, S., J. Stephan, T. Hertrich, A. Saito, G.P.h van Wezel, F. Titgemeyer, and S. Rigali. 2006. Conserved cis-acting elements upstream of genes composing the chitinolytic system of Streptomycetes are DasR-responsive elements. J. Mol. Microbiol. Biotechnol. 12, 60–66.CrossRefGoogle Scholar
  6. Fernandez, M. and J. Sanchez. 2002. Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antbioticus ETH7451. Microbiology 148, 405–412.PubMedGoogle Scholar
  7. Hong, S.K., A. Matsumoto, S. Horinouchi, and T. Beppu. 1993. Effects of protein kinase inhibitors on in vitro protein phosphorylation and cellular differentiation of Streptomyces griseus. Mol. Gen. Genet. 236, 347–354.PubMedCrossRefGoogle Scholar
  8. Hopwood, D.A., M.J. Bibb, K.J. Chater, T. Kieser, C.J. Bruton, H.M. Kieser, D.J. Lydiate, C.P. Smith, J.M. Ward, and H. Schrempf. 1985. Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation, Norwich, England.Google Scholar
  9. Horinouchi, S. 2002. A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front. Biosci. 7, 2045–2057.CrossRefGoogle Scholar
  10. Horinouchi, S. 2007. Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci. Biotechnol. Biochem. 71, 283–299.PubMedCrossRefGoogle Scholar
  11. Horinouchi, S. and T. Beppu. 1994. A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol. Microbiol. 12, 859–864.PubMedCrossRefGoogle Scholar
  12. Horinouchi, S., Y. Kumada, and T. Beppu. 1984. Unstable genetic determinant of A-factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J. Bacteriol. 158, 481–487.PubMedGoogle Scholar
  13. Kato, J.Y., W.J. Chi, Y. Ohnishi, S.K. Hong, and S. Horinouchi. 2005. Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187, 286–295.PubMedCrossRefGoogle Scholar
  14. Kim, E.S., H.J. Hong, C.Y. Choi, and N. Cohen. 2001. Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. J. Bacteriol. 183, 2198–2203.PubMedCrossRefGoogle Scholar
  15. Kim, Y.J., S.O. Sa, Y.K. Chang, S.K. Hong, and Y.S. Hong. 2007. Overexpression of Shinorhzobium meliloti hemoprotein in Streptomyces lividans to enhance secondary metabolite production. J. Microbiol. Biotechnol. 17, 2066–2070.PubMedGoogle Scholar
  16. Maniatis, T., E.F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY, USA.Google Scholar
  17. Manteca, A., R. Alvarez, N. Salazar, P. Yagüe, and J. Sanchez. 2008. Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl. Environ. Microbiol. 74, 3877–3886.PubMedCrossRefGoogle Scholar
  18. Nothaft, H., S. Rigali, B. Boomsma, M. Swiatek, K.J. McDowall, G.P. van Wezel, and F. Titgemeyer. 2010. The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol. Microbiol. 75, 1133–1144.PubMedCrossRefGoogle Scholar
  19. Rigali, S., H. Nothaft, E.E.E. Noens, M. Schlicht, S. Colson, M. Müller, B. Joris, and et al. 2006. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 61, 1237–1257.PubMedCrossRefGoogle Scholar
  20. Rigali, S., F. Titgemeyer, S. Barends, S. Mulder, A.W. Thomae, D.A. Hopwood, and G.P. van Wezel. 2008. Feast of famine: the global regulator DasR links nutrient stress to antibiotic production by Strepotmyces. EMBO Reports 9, 670–675.PubMedCrossRefGoogle Scholar
  21. Sambrook, J. and D.W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd (ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY, USA.Google Scholar
  22. Seo, J.W., Y. Ohnishi, A. Hirata, and S. Horinouchi. 2002. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J. Bacteriol. 184, 91–103.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Department of Biological ScienceMyongji UniversityGyeonggi-doRepublic of Korea
  2. 2.Department of BiotechnologyHankyong National UniversityGyeonggi-doRepublic of Korea
  3. 3.Department of Food and NutritionSeoil UniversitySeoulRepublic of Korea

Personalised recommendations