Candida albicans, a major human fungal pathogen

Abstract

Candida albicans is the most common human fungal pathogen (Beck-Sague and Jarvis, 1993). It is normally a harmless commensal organism. However, it is a opportunistic pathogen for some immunologically weak and immunocompromised people. It is responsible for painful mucosal infections such as the vaginitis in women and oral-pharangeal thrush in AIDS patients. In certain groups of vulnerable patients it causes severe, life-threatening bloodstream infections and it causes severe, life-threatening bloodstream infections and subsequent infections in the internal organs. There are various fascinating features of the C. albicans life cycle and biology that have made the pathogen the subject of extensive research, including its ability to grow in unicellular yeast, psudohyphal, and hyphal forms (Fig. 1A); its ability to switch between different but stable phenotypic states, and the way that it retains the ability to mate but apparently loses the ability to go through meiosis to complete the sexual cycle. This research has been greatly facilitated by the derivation of the complete C. albicans genome sequence (Braun et al., 2005), the development of a variety of molecular tools for gene manipulation, and a store of underpinning knowledge of cell biology borrowed from the distantly related model yeast Saccharomyces cerevisiae (Berman and Sudbery, 2002; Noble and Johnson, 2007). This review will provide a brief overview of the importance of C. albicans as a public health issue, the experimental tools developed to study its fascinating biology, and some examples of how these have been applied.

This is a preview of subscription content, access via your institution.

References

  1. Banerjee, M., D.S. Thompson, A. Lazzell, P.L. Carlisle, C. Pierce, C. Monteagudo, J.L. Lopez-Ribot, and D. Kadosh. 2008. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol. Biol. Cell 19, 1354–1365.

    PubMed  Article  CAS  Google Scholar 

  2. Bartnicki-Garcia, S., F. Hergert, and G. Gierz. 1989. Computer-simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma 153, 46–57.

    Article  Google Scholar 

  3. Beck-Sague, C.M. and W.R. Jarvis. 1993. National nosecomial infections surveillance system. Secular trends in the epidemiology of nosocomial fungal infections in the United states 1980–1990. J. Infect. Dis. 167, 1247–1251.

    PubMed  Article  CAS  Google Scholar 

  4. Bennett, R.J. and A.D. Johnson. 2005. Mating in Candida albicans and the search for a sexual cycle. Ann. Rev. Microbiol. 59, 233–255.

    Article  CAS  Google Scholar 

  5. Berman, J. and P.E. Sudbery. 2002. Candida albicans: A molecular revolution built on lessons from budding yeast. Nat. Rev. Gen. 3, 918–930.

    Article  CAS  Google Scholar 

  6. Biswas, S., P. Van Dijck, and A. Datta. 2007. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol. Mol. Biol. Rev. 71, 348–376.

    PubMed  Article  CAS  Google Scholar 

  7. Blankenship, J.R. and A.P. Mitchell. 2006. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol. 9, 588–594.

    PubMed  Article  CAS  Google Scholar 

  8. Brand, A., D.M. MacCallum, A.J.P. Brown, N.A.R. Gow, and F.C. Odds. 2004. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot. Cell. 3, 900–909.

    PubMed  Article  CAS  Google Scholar 

  9. Braun, B.R., M.V. Hoog, C. d’Enfert, M. Martchenko, J. Dungan, A. Kuo, D.O. Inglis, and et al. 2005. A human-curated annotation of the Candida albicans genome. PLoS Genet. 1, 36–57.

    PubMed  Article  CAS  Google Scholar 

  10. Brown, A.J.P. 2002. Expression of growth form-specific factors during morphogenesis in Candida albicans, pp. 87–94. In R.A. Calderone (ed.) ASM press, Washington DC, USA.

    Google Scholar 

  11. Brown, A.J.P., S. Argimon, and N.A.R. Gow. 2007. Signal transduction and morphogenesis in Candida albicans, pp. 167–194. In R.J. Howard and N.A.R. Gow (eds.), Biology of the fungal cell. Springer, Berlin, Germany.

    Google Scholar 

  12. Butler, G., M.D. Rasmussen, M.F. Lin, M.A.S. Santos, S. Sakthikumar, C.A. Munro, E. Rheinbay, and et al. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662.

    PubMed  Article  CAS  Google Scholar 

  13. Care, R.A., J. Trevethick, K.M. Binley, and P.E. Sudbery. 1999. The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol. Microbiol. 34, 792–798.

    PubMed  Article  CAS  Google Scholar 

  14. Carlisle, P.L., M. Banerjee, A. Lazzell, C. Monteagudo, J.L. Lopez-Ribot, and D. Kadosh. 2009. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc. Natl. Acad. Sci. USA 106, 599–604.

    PubMed  Article  CAS  Google Scholar 

  15. Crampin, H., K. Finley, M. Gerami-Nejad, H. Court, C. Gale, J. Berman, and P.E. Sudbery. 2005. Candida albicans hyphae have a Spitzenkorper that is distinct from the polarisome found in yeast and pseudohyphae. J. Cell. Sci. 118, 2935–2947.

    PubMed  Article  CAS  Google Scholar 

  16. Daniels, K.J., T. Srikantha, S.R. Lockhart, C. Pujol, and D.R. Soll. 2006. Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J. 25, 2240–2252.

    PubMed  Article  CAS  Google Scholar 

  17. Fidel, P.L. 2007. History and update on host defense against vaginal candidiasis. Am. J. Reprod. Immunol. 57, 2–12.

    PubMed  Article  Google Scholar 

  18. Hornby, J.M., E.C. Jensen, A.D. Lisec, J.J. Tasto, B. Jahnke, R. Shoemaker, P. Dussault, and K.W. Nickerson. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67, 2982–2992.

    PubMed  Article  CAS  Google Scholar 

  19. Jones, L.A. and P.E. Sudbery. 2010. Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. Eukaryot. Cell 9, 1455–1465.

    PubMed  Article  CAS  Google Scholar 

  20. Kibbler, C.C., S. Seaton, R.A. Barnes, W.R. Gransden, R.E. Holliman, E.M. Johnson, J.D. Perry, D.J. Sullivan, and J.A. Wilson. 2003. Management and outcome of bloodstream infections due to Candida species in England and Wales. J. Hosp. Infect. 54, 18–24.

    PubMed  Article  CAS  Google Scholar 

  21. Kim, S.W., Y.J. Joo, and J. Kim. 2010. Asc1p, a ribosomal protein, plays a pivotal role in cellular adhesion and virulence in Candida albicans. J. Microbiol. 48, 842–848.

    PubMed  Article  CAS  Google Scholar 

  22. Klein, R.S., C.A. Harris, C.B. Small, B. Moll, M. Lesser, and G.H. Friedland. 1984. Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N. Engl. J. Med. 311, 354–358.

    PubMed  Article  CAS  Google Scholar 

  23. Klengel, T., W.J. Liang, J. Chaloupka, C. Ruoff, K. Schroppel, J.R. Naglik, S.E. Eckert, and et al. 2005. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence (vol 15, pg 2021, 2005). Curr. Biol. 15, 2177.

    Article  CAS  Google Scholar 

  24. Lane, B., R. Beniston, B. Chapa-y-Lazo, C. Smythe, and P.E. Sudbery. 2010. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J. 29, 2930–2942.

    PubMed  Article  Google Scholar 

  25. Liu, X., X. Nie, Y. Ding, and J. Chen. 2010. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans. Acta. Biochim. Biophys. Sin. 42, 793–800.

    PubMed  Article  CAS  Google Scholar 

  26. Lockhart, S.R., K.J. Daniels, R. Zhao, D. Wessels, and D.R. Soll. 2003. Cell biology of mating in Candida albicans. Eukaryot. Cell 2, 49–61.

    PubMed  Article  CAS  Google Scholar 

  27. Nobile, C.J. and A.P. Mitchell. 2006. Genetics and genomics of Candida albicans biofilm formation. Cell. Microbiol. 8, 1382–1391.

    PubMed  Article  CAS  Google Scholar 

  28. Nobile, C.J., J.E. Nett, A.D. Hernday, O.R. Homann, J.S. Deneault, A. Nantel, D.R. Andes, A.D. Johnson, and A.P. Mitchell. 2009. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 7, e1000133.

    PubMed  Article  Google Scholar 

  29. Noble, S.M. and A.D. Johnson. 2007. Genetics of Candida albicans, a diploid human fungal pathogen. Annu. Rev. Genet. 41, 193–211.

    PubMed  Article  CAS  Google Scholar 

  30. Odds, F.C. 1988. The ecology of Candida and epidemiology of Candidosis, pp. 68–92. Candida and Candidosis: a review and bibliography. Balliere Tindall, London, UK.

    Google Scholar 

  31. Odds, F.C. and M.D. Jacobsen. 2008. Multilocus sequence typing of pathogenic Candida species. Eukaryot. Cell 7, 1075–1084.

    PubMed  Article  CAS  Google Scholar 

  32. Pfaller, M.A., R.N. Jones, S.A. Messer, M.B. Edmond, and R.P. Wenzel. 1998. National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: Frequency of occurrence and antifungal susceptibility in the SCOPE program. Diagn. Microbiol. Infect. Dis. 30, 121–129.

    PubMed  Article  CAS  Google Scholar 

  33. Runke, M. 2002. Skin and mucous infections, pp. 307–325. In R. Calderone (ed.), Candida and Candidiasis. ASM Press, Washington D.C., USA.

    Google Scholar 

  34. Santos, M.A.S. and M.F. Tuite. 1995. The Cug Codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res. 23, 1481–1486.

    PubMed  Article  CAS  Google Scholar 

  35. Selmecki, A., A. Forche, and J. Berman. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370.

    PubMed  Article  CAS  Google Scholar 

  36. Slutsky, B., J. Buffo, and D.R. Soll. 1985. High-frequency switching of colony morphology in Candida albicans. Science 230, 666–669.

    PubMed  Article  CAS  Google Scholar 

  37. Slutsky, B., M. Staebell, J. Anderson, J. Risen, J. Pfaller, and D.R. Soll. 1987. White-opaque transition: a second high frequency transition in Candida albicans. J. Bacteriol. 169, 189–197.

    PubMed  CAS  Google Scholar 

  38. Sobel, J.D. 1997. Vaginitis. N. Engl. J. Med. 337, 1896–1903.

    PubMed  Article  CAS  Google Scholar 

  39. Staab, J. and P. Sundstrom. 2003. URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes. Trends Microbiol. 11, 69–73.

    PubMed  Article  CAS  Google Scholar 

  40. Sudbery, P.E. and H. Court. 2007. Polarised growth in fungi, pp. 137–166. In R.J. Howard and N.A.R. Gow (eds.), Biology of the fungal cell. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  41. Sudbery, P.E., N.A.R. Gow, and J. Berman. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12, 317–324.

    PubMed  Article  CAS  Google Scholar 

  42. Tsong, A.E., M.G. Miller, R.M. Raisner, and A.D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: A case study in yeasts. Cell 115, 389–399.

    PubMed  Article  CAS  Google Scholar 

  43. Tsong, A.E., B.B. Tuch, H. Li, and A.D. Johnson. 2006. Evolution of alternative transcriptional circuits with identical logic. Nature 443, 415–420.

    PubMed  Article  CAS  Google Scholar 

  44. vis-Hanna, A., A.E. Piispanen, L.I. Stateva, and D.A. Hogan. 2008. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol. Microbiol. 67, 47–62.

    Article  Google Scholar 

  45. Xu, X.L., R.T.H. Lee, H.M. Fang, Y.M. Wang, R. Li, H. Zou, Y. Zhu, and Y. Wang. 2008. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Joon Kim or Peter Sudbery.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, J., Sudbery, P. Candida albicans, a major human fungal pathogen. J Microbiol. 49, 171 (2011). https://doi.org/10.1007/s12275-011-1064-7

Download citation

Keywords

  • Candida albicans
  • fungal pathogen
  • candidiasis
  • candidemia
  • morphological change