Advertisement

Candida albicans, a major human fungal pathogen

  • Joon Kim
  • Peter Sudbery
Review

Abstract

Candida albicans is the most common human fungal pathogen (Beck-Sague and Jarvis, 1993). It is normally a harmless commensal organism. However, it is a opportunistic pathogen for some immunologically weak and immunocompromised people. It is responsible for painful mucosal infections such as the vaginitis in women and oral-pharangeal thrush in AIDS patients. In certain groups of vulnerable patients it causes severe, life-threatening bloodstream infections and it causes severe, life-threatening bloodstream infections and subsequent infections in the internal organs. There are various fascinating features of the C. albicans life cycle and biology that have made the pathogen the subject of extensive research, including its ability to grow in unicellular yeast, psudohyphal, and hyphal forms (Fig. 1A); its ability to switch between different but stable phenotypic states, and the way that it retains the ability to mate but apparently loses the ability to go through meiosis to complete the sexual cycle. This research has been greatly facilitated by the derivation of the complete C. albicans genome sequence (Braun et al., 2005), the development of a variety of molecular tools for gene manipulation, and a store of underpinning knowledge of cell biology borrowed from the distantly related model yeast Saccharomyces cerevisiae (Berman and Sudbery, 2002; Noble and Johnson, 2007). This review will provide a brief overview of the importance of C. albicans as a public health issue, the experimental tools developed to study its fascinating biology, and some examples of how these have been applied.

Keywords

Candida albicans fungal pathogen candidiasis candidemia morphological change 

References

  1. Banerjee, M., D.S. Thompson, A. Lazzell, P.L. Carlisle, C. Pierce, C. Monteagudo, J.L. Lopez-Ribot, and D. Kadosh. 2008. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol. Biol. Cell 19, 1354–1365.PubMedCrossRefGoogle Scholar
  2. Bartnicki-Garcia, S., F. Hergert, and G. Gierz. 1989. Computer-simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma 153, 46–57.CrossRefGoogle Scholar
  3. Beck-Sague, C.M. and W.R. Jarvis. 1993. National nosecomial infections surveillance system. Secular trends in the epidemiology of nosocomial fungal infections in the United states 1980–1990. J. Infect. Dis. 167, 1247–1251.PubMedCrossRefGoogle Scholar
  4. Bennett, R.J. and A.D. Johnson. 2005. Mating in Candida albicans and the search for a sexual cycle. Ann. Rev. Microbiol. 59, 233–255.CrossRefGoogle Scholar
  5. Berman, J. and P.E. Sudbery. 2002. Candida albicans: A molecular revolution built on lessons from budding yeast. Nat. Rev. Gen. 3, 918–930.CrossRefGoogle Scholar
  6. Biswas, S., P. Van Dijck, and A. Datta. 2007. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol. Mol. Biol. Rev. 71, 348–376.PubMedCrossRefGoogle Scholar
  7. Blankenship, J.R. and A.P. Mitchell. 2006. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol. 9, 588–594.PubMedCrossRefGoogle Scholar
  8. Brand, A., D.M. MacCallum, A.J.P. Brown, N.A.R. Gow, and F.C. Odds. 2004. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot. Cell. 3, 900–909.PubMedCrossRefGoogle Scholar
  9. Braun, B.R., M.V. Hoog, C. d’Enfert, M. Martchenko, J. Dungan, A. Kuo, D.O. Inglis, and et al. 2005. A human-curated annotation of the Candida albicans genome. PLoS Genet. 1, 36–57.PubMedCrossRefGoogle Scholar
  10. Brown, A.J.P. 2002. Expression of growth form-specific factors during morphogenesis in Candida albicans, pp. 87–94. In R.A. Calderone (ed.) ASM press, Washington DC, USA.Google Scholar
  11. Brown, A.J.P., S. Argimon, and N.A.R. Gow. 2007. Signal transduction and morphogenesis in Candida albicans, pp. 167–194. In R.J. Howard and N.A.R. Gow (eds.), Biology of the fungal cell. Springer, Berlin, Germany.CrossRefGoogle Scholar
  12. Butler, G., M.D. Rasmussen, M.F. Lin, M.A.S. Santos, S. Sakthikumar, C.A. Munro, E. Rheinbay, and et al. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662.PubMedCrossRefGoogle Scholar
  13. Care, R.A., J. Trevethick, K.M. Binley, and P.E. Sudbery. 1999. The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol. Microbiol. 34, 792–798.PubMedCrossRefGoogle Scholar
  14. Carlisle, P.L., M. Banerjee, A. Lazzell, C. Monteagudo, J.L. Lopez-Ribot, and D. Kadosh. 2009. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc. Natl. Acad. Sci. USA 106, 599–604.PubMedCrossRefGoogle Scholar
  15. Crampin, H., K. Finley, M. Gerami-Nejad, H. Court, C. Gale, J. Berman, and P.E. Sudbery. 2005. Candida albicans hyphae have a Spitzenkorper that is distinct from the polarisome found in yeast and pseudohyphae. J. Cell. Sci. 118, 2935–2947.PubMedCrossRefGoogle Scholar
  16. Daniels, K.J., T. Srikantha, S.R. Lockhart, C. Pujol, and D.R. Soll. 2006. Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J. 25, 2240–2252.PubMedCrossRefGoogle Scholar
  17. Fidel, P.L. 2007. History and update on host defense against vaginal candidiasis. Am. J. Reprod. Immunol. 57, 2–12.PubMedCrossRefGoogle Scholar
  18. Hornby, J.M., E.C. Jensen, A.D. Lisec, J.J. Tasto, B. Jahnke, R. Shoemaker, P. Dussault, and K.W. Nickerson. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67, 2982–2992.PubMedCrossRefGoogle Scholar
  19. Jones, L.A. and P.E. Sudbery. 2010. Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. Eukaryot. Cell 9, 1455–1465.PubMedCrossRefGoogle Scholar
  20. Kibbler, C.C., S. Seaton, R.A. Barnes, W.R. Gransden, R.E. Holliman, E.M. Johnson, J.D. Perry, D.J. Sullivan, and J.A. Wilson. 2003. Management and outcome of bloodstream infections due to Candida species in England and Wales. J. Hosp. Infect. 54, 18–24.PubMedCrossRefGoogle Scholar
  21. Kim, S.W., Y.J. Joo, and J. Kim. 2010. Asc1p, a ribosomal protein, plays a pivotal role in cellular adhesion and virulence in Candida albicans. J. Microbiol. 48, 842–848.PubMedCrossRefGoogle Scholar
  22. Klein, R.S., C.A. Harris, C.B. Small, B. Moll, M. Lesser, and G.H. Friedland. 1984. Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N. Engl. J. Med. 311, 354–358.PubMedCrossRefGoogle Scholar
  23. Klengel, T., W.J. Liang, J. Chaloupka, C. Ruoff, K. Schroppel, J.R. Naglik, S.E. Eckert, and et al. 2005. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence (vol 15, pg 2021, 2005). Curr. Biol. 15, 2177.CrossRefGoogle Scholar
  24. Lane, B., R. Beniston, B. Chapa-y-Lazo, C. Smythe, and P.E. Sudbery. 2010. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J. 29, 2930–2942.PubMedCrossRefGoogle Scholar
  25. Liu, X., X. Nie, Y. Ding, and J. Chen. 2010. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans. Acta. Biochim. Biophys. Sin. 42, 793–800.PubMedCrossRefGoogle Scholar
  26. Lockhart, S.R., K.J. Daniels, R. Zhao, D. Wessels, and D.R. Soll. 2003. Cell biology of mating in Candida albicans. Eukaryot. Cell 2, 49–61.PubMedCrossRefGoogle Scholar
  27. Nobile, C.J. and A.P. Mitchell. 2006. Genetics and genomics of Candida albicans biofilm formation. Cell. Microbiol. 8, 1382–1391.PubMedCrossRefGoogle Scholar
  28. Nobile, C.J., J.E. Nett, A.D. Hernday, O.R. Homann, J.S. Deneault, A. Nantel, D.R. Andes, A.D. Johnson, and A.P. Mitchell. 2009. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 7, e1000133.PubMedCrossRefGoogle Scholar
  29. Noble, S.M. and A.D. Johnson. 2007. Genetics of Candida albicans, a diploid human fungal pathogen. Annu. Rev. Genet. 41, 193–211.PubMedCrossRefGoogle Scholar
  30. Odds, F.C. 1988. The ecology of Candida and epidemiology of Candidosis, pp. 68–92. Candida and Candidosis: a review and bibliography. Balliere Tindall, London, UK.Google Scholar
  31. Odds, F.C. and M.D. Jacobsen. 2008. Multilocus sequence typing of pathogenic Candida species. Eukaryot. Cell 7, 1075–1084.PubMedCrossRefGoogle Scholar
  32. Pfaller, M.A., R.N. Jones, S.A. Messer, M.B. Edmond, and R.P. Wenzel. 1998. National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: Frequency of occurrence and antifungal susceptibility in the SCOPE program. Diagn. Microbiol. Infect. Dis. 30, 121–129.PubMedCrossRefGoogle Scholar
  33. Runke, M. 2002. Skin and mucous infections, pp. 307–325. In R. Calderone (ed.), Candida and Candidiasis. ASM Press, Washington D.C., USA.Google Scholar
  34. Santos, M.A.S. and M.F. Tuite. 1995. The Cug Codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res. 23, 1481–1486.PubMedCrossRefGoogle Scholar
  35. Selmecki, A., A. Forche, and J. Berman. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370.PubMedCrossRefGoogle Scholar
  36. Slutsky, B., J. Buffo, and D.R. Soll. 1985. High-frequency switching of colony morphology in Candida albicans. Science 230, 666–669.PubMedCrossRefGoogle Scholar
  37. Slutsky, B., M. Staebell, J. Anderson, J. Risen, J. Pfaller, and D.R. Soll. 1987. White-opaque transition: a second high frequency transition in Candida albicans. J. Bacteriol. 169, 189–197.PubMedGoogle Scholar
  38. Sobel, J.D. 1997. Vaginitis. N. Engl. J. Med. 337, 1896–1903.PubMedCrossRefGoogle Scholar
  39. Staab, J. and P. Sundstrom. 2003. URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes. Trends Microbiol. 11, 69–73.PubMedCrossRefGoogle Scholar
  40. Sudbery, P.E. and H. Court. 2007. Polarised growth in fungi, pp. 137–166. In R.J. Howard and N.A.R. Gow (eds.), Biology of the fungal cell. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
  41. Sudbery, P.E., N.A.R. Gow, and J. Berman. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12, 317–324.PubMedCrossRefGoogle Scholar
  42. Tsong, A.E., M.G. Miller, R.M. Raisner, and A.D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: A case study in yeasts. Cell 115, 389–399.PubMedCrossRefGoogle Scholar
  43. Tsong, A.E., B.B. Tuch, H. Li, and A.D. Johnson. 2006. Evolution of alternative transcriptional circuits with identical logic. Nature 443, 415–420.PubMedCrossRefGoogle Scholar
  44. vis-Hanna, A., A.E. Piispanen, L.I. Stateva, and D.A. Hogan. 2008. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol. Microbiol. 67, 47–62.CrossRefGoogle Scholar
  45. Xu, X.L., R.T.H. Lee, H.M. Fang, Y.M. Wang, R. Li, H. Zou, Y. Zhu, and Y. Wang. 2008. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratory of Biochemistry, School of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea
  2. 2.Department of Molecular Biology and BiotechnologyUniversity of SheffieldWestern Bank, SheffieldUK

Personalised recommendations