The Journal of Microbiology

, Volume 49, Issue 6, pp 1027–1032 | Cite as

Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment

  • Min Young Jung
  • Joong-Su Kim
  • Woon Kee Paek
  • Jeongheui Lim
  • Hansoo Lee
  • Pyoung Il Kim
  • Jin Yeul Ma
  • Wonyong Kim
  • Young-Hyo Chang


A Gram-positive, endospore-forming, new Bacillus species, strain BL4-6T, was isolated from tidal flat sediment of the Yellow Sea. Strain BL4-6T is a straight rod, with motility by peritrichate flagella. The cell wall contains meso-diaminopimelic acid, and the major respiratory quinone is menaquinone-7. The major fatty acids are iso-C15:0 and summed feature 3 (containing C16:1 ω7c/iso-C15:0 2OH, and/or iso-C15:0 2OH/C16:1 ω7c). Cells are catalase-positive and oxidase-negative. The G+C content of the genomic DNA is 38.0 mol%. Based on a comparative 16S rRNA gene sequence analysis, the isolate belongs to the genus Bacillus, forms a clade with the Bacillus cereus group, and is closely related to Bacillus mycoides (98.5%), Bacillus cereus (98.5%), Bacillus anthracis (98.4%), Bacillus thuringiensis (98.4%), Bacillus weihenstephanensis (98.1%), and Bacillus pseudomycoides (97.5%). The isolate showed less than 85% similarity of the gyrA gene sequence and below 95% similarity of the rpoB gene sequence to the members of this group. DNA-DNA relatedness between strain BL4-6T and B. cereus group was found to be in a range of 22.8–42.3%, and thus BL4-6T represents a unique species. On the basis of these studies, strain BL4-6T (=KCTC 13319T =JCM 15802T) is proposed to represent the type strain of a novel species, Bacillus manliponensis sp. nov.


Bacillus cereus group Bacillus manliponensis sp. nov. phylogenetic new species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2011_1049_MOESM1_ESM.pdf (471 kb)
Supplementary material, approximately 471 KB.


  1. Ahmed, I., A. Yokota, A. Yamazoe, and T. Fujiwara. 2007. Proposal of Lysinibacillus boronitolerans gen. nov., sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol. 57, 1117–1125.PubMedCrossRefGoogle Scholar
  2. Antwerpen, M.H., M. Schellhase, E. Ehrentreich-Forster, F. Bier, W. Witte, and U. Nubel. 2007. DNA microarray for detection of antibiotic resistance determinants in Bacillus anthracis and closely related Bacillus cereus. Mol. Cell. Probes 21, 152–160.PubMedCrossRefGoogle Scholar
  3. Ash, C., J.A. Farrow, S. Wallbanks, and M.D. Collins. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13, 202–206.CrossRefGoogle Scholar
  4. Chang, Y.H., J. Han, J. Chun, K.C. Lee, M.S. Rhee, Y.B. Kim, and K.S. Bae. 2002. Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int. J. Syst. Evol. Microbiol. 52, 377–381.PubMedGoogle Scholar
  5. Chang, Y.H., M.Y. Jung, I.S. Park, and H.M. Oh. 2008. Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int. J. Syst. Evol. Microbiol. 58, 2316–2320.PubMedCrossRefGoogle Scholar
  6. Claus, D. and R.C.W. Berkeley. 1986. Genus Bacillus Cohn 1872, p. 1105–1140. In P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (eds.), Bergey’s manual of systematic bacteriology, vol. 2. The Williams and Wilkins Co., Baltimore, USA.Google Scholar
  7. Drobniewski, F.A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6, 324–338.PubMedGoogle Scholar
  8. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.CrossRefGoogle Scholar
  9. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.PubMedCrossRefGoogle Scholar
  10. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 40, 783–791.CrossRefGoogle Scholar
  11. Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c, Seattle: Department of Genetics, University of Washington, USA.Google Scholar
  12. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  13. Gonzalez, J.M. and C. Saiz-Jimenez. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.PubMedCrossRefGoogle Scholar
  14. Helgason, E., O.A. Okstad, D.A. Caugant, H.A. Johansen, A. Fouet, M. Mock, I. Hegna, and A.B. Kolsto. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis — One species on the basis of genetic evidence. Appl. Environ. Microbiol. 66, 2627–2630.PubMedCrossRefGoogle Scholar
  15. Henderson, I., C.J. Duggleby, and P.C.B. Turnbull. 1994. Differentiation of Bacillus antliracis from other Bacillus cereus group bacteria with the PCR. Int. J. Syst. Bacteriol. 44, 99–105.PubMedCrossRefGoogle Scholar
  16. Jung, M.Y., J.S. Kim, and Y.H. Chang. 2009. Bacillus acidiproducens sp. nov., vineyard soil isolates that produce lactic acid. Int. J. Syst. Evol. Microbiol. 59, 2226–2231.PubMedCrossRefGoogle Scholar
  17. Jung, M.Y., W.K. Paek, I.S. Park, J.R. Han, Y. Sin, J. Paek, M.S. Rhee, H. Kim, H.S. Song and Y.H. Chang. 2010a. Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea. J. Microbiol. 48, 867–871.PubMedCrossRefGoogle Scholar
  18. Jung, M.Y., W.K. Paek, I. Styrak, and Y.H. Chang. 2010b. Proposal of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus mas siliensis and Bacillus odysseyi to Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended descriptions of the genus. Int. J. Syst. Evol. Microbiol. 60, 3003.PubMedCrossRefGoogle Scholar
  19. Kämpfer, P., K. Blasczyk, and G. Auling. 1994. Characterization of Aeromonas genomic species by using quinone, polyamine, and fatty acid patterns. Can. J. Microbiol. 40, 844–850.PubMedCrossRefGoogle Scholar
  20. Kaneko, T., R. Nozaki, and K. Aizawa. 1978. Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol. 22, 639–641.PubMedGoogle Scholar
  21. Kim, W., J.Y. Kim, S.L. Cho, S.W. Nam, J.W. Shin, Y.S. Kim, and H.S. Shin. 2008. Glycosyltransferase — a specific marker for the discrimination of Bacillus anthracis from the Bacillus cereus group. J. Med. Microbiol. 57, 279–286.PubMedCrossRefGoogle Scholar
  22. Ko, K.S., J.M. Kim, J.W. Kim, B.Y. Jung, W. Kim, I.J. Kim, and Y.H. Kook. 2003. Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR. J. Clin. Microbiol. 41, 2908–2914.PubMedCrossRefGoogle Scholar
  23. Komagata, K. and K. Suzuki. 1987. Lipid and cell-wall analysis in bacterial systematics. In R.R. Colwell and R. Grigorova (eds.), Method in microbiology, vol. 19, pp. 161–207. Academic press, London, UK.Google Scholar
  24. Lechner, S., R. Mayr, K.P. Francis, B.M. Pruss, T. Kaplan, E. Wiessner-Gunkel, G.S. Stewart, and S. Scherer. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 48, 1373–1382.PubMedCrossRefGoogle Scholar
  25. Nakamura, L.K. and M.A. Jackson. 1995. Clarification of the taxonomy of Bacillus mycoides. J. Appl. Microbiol. 45, 46–49.Google Scholar
  26. Nakamura, L.K. 1998. Bacillus pseudomycoides sp. nov. Int. J. Syst. Bacteriol. 48, 1031–1035.PubMedCrossRefGoogle Scholar
  27. Priest, F.G., M. Goodfellow, and C. Todd. 1988. A numerical classification of the genus Bacillus. J. Gen. Microbiol. 134, 1847–1882.PubMedGoogle Scholar
  28. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  29. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI, Newark, DE, USA.Google Scholar
  30. Schleifer, K.H. 1985. Analysis of the chemical composition and primary structure of murein. Methods Microbiol. 18, 123–156.CrossRefGoogle Scholar
  31. Smibert, R.M. and N.R. Krieg. 1994. Phenotypic characterization. In P. Gerhardt, R.G.E. Murray, W.A. Wood, and N.R. Krieg, Methods for General and Molecular Bacteriology, p. 607–654. American Society for Microbiology. Washington, DC, USA.Google Scholar
  32. Stackebrandt, E. and J. Ebers. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33, 152–155.Google Scholar
  33. Thorne, C.B. 1993. Bacillus anthracis, In A.L. Sonenshein, J.A. Hoch, and R. Losick (eds.), Bacillus subtilis and other gram-positive bacteria, pp. 113–124. American Society for Microbiology, Washington D.C, USA.Google Scholar
  34. Vogler, A.J., J.D. Busch, S. Percy-Fine, C. Tipton-Hunton, K.L. Smith, and P. Keim. 2002. Molecular analysis of rifampin resistance in Bacillus anthracis and Bacillus cereus. Antimicrob. Agents Chemother. 46, 511–513.PubMedCrossRefGoogle Scholar
  35. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, and et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Min Young Jung
    • 1
    • 7
  • Joong-Su Kim
    • 2
  • Woon Kee Paek
    • 3
  • Jeongheui Lim
    • 1
  • Hansoo Lee
    • 4
  • Pyoung Il Kim
    • 5
  • Jin Yeul Ma
    • 6
  • Wonyong Kim
    • 7
  • Young-Hyo Chang
    • 1
  1. 1.Korean Collection for Type Cultures, Biological Resource CenterKRIBBDaejeonRepublic of Korea
  2. 2.Molecular Bioprocess Research Center, Jeonbuk Branch InstituteKRIBBJeonbukRepublic of Korea
  3. 3.National Science MuseumDaejeonRepublic of Korea
  4. 4.Korea Institute of Environmental EcologyDaejeonRepublic of Korea
  5. 5.School of Chemical and Biological Engineering, Institute of Molecular Biology and GeneticsSeoul National UniversitySeoulRepublic of Korea
  6. 6.Center for Herbal Medicine Improvement ResearchKorea Institute of Oriental MedicineDaejeonRepublic of Korea
  7. 7.Department of Microbiology, College of MedicineChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations