The Journal of Microbiology

, Volume 49, Issue 3, pp 473–480 | Cite as

Isolation and characterization of a reducing polyketide synthase gene from the lichen-forming fungus Usnea longissima

  • Yi Wang
  • Jung A. Kim
  • Yong Hwa Cheong
  • Yogesh Joshi
  • Young Jin Koh
  • Jae-Seoun HurEmail author


The reducing polyketide synthases found in filamentous fungi are involved in the biosynthesis of many drugs and toxins. Lichens produce bioactive polyketides, but the roles of reducing polyketide synthases in lichens remain to be clearly elucidated. In this study, a reducing polyketide synthase gene (U1PKS3) was isolated and characterized from a cultured mycobiont of Usnea longissima. Complete sequence information regarding U1PKS3 (6,519 bp) was obtained by screening a fosmid genomic library. A U1PKS3 sequence analysis suggested that it contains features of a reducing fungal type I polyketide synthase with β-ketoacyl synthase (KS), acyltransferase (AT), dehydratase (DH), enoyl reductase (ER), ketoacyl reducatse (KR), and acyl carrier protein (ACP) domains. This domain structure was similar to the structure of ccRadsl, which is known to be involved in resorcylic acid lactone biosynthesis in Chaetomium chiversii. The results of phylogenetic analysis located U1PKS3 in the clade of reducing polyketide synthases. RT-PCR analysis results demonstrated that UIPKS3 had six intervening introns and that UIPKS3 expression was upregulated by glucose, sorbitol, inositol, and mannitol.


lichen forming-fungi mRNA expression reducing polyketide syntheses Usnea longissima 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, S.E., S. Kroken, P. Inderbitzin, T. Asvarak, B.Y. Li, L. Shi, O.C. Yoder, and B.G. Turgeon. 2006. Two polyketide synthase encoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus. Mol. Plant-Microbe Interact. 19, 139–149.PubMedCrossRefGoogle Scholar
  2. Balaji, P. and G.N. Hariharan. 2007. In vitro antimicrobial activity of Parmotrema praesorediosum thallus extracts. Res. J. Bot. 2, 54–59.CrossRefGoogle Scholar
  3. Bayir, Y., C.A. Odabasoglu, A. Aslan, H. Suleyman, M. Halici, and C. Kazaz. 2006. The inhibition of gastric mucosal lesion, oxidative stress and neutrophil-infiltration in rats by the lichen constituent diffractaic acid. Phytomedicine 13, 584–590.PubMedCrossRefGoogle Scholar
  4. Berg, M.A.V.D., R. Albang, K. Albermann, J.H. Badger, J.M. Daran, A.J.M. Driessen, C.G. Estrada, and et al. 2008. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 26, 1161–1168.PubMedCrossRefGoogle Scholar
  5. Boustie, J. and M. Grube. 2007. Lichens-a promising source of bioactive secondary metabolites. Plant Genet. Resour. 3, 273–287.CrossRefGoogle Scholar
  6. Brij, L. and D.K. Upreti. 1995. Ethnobotanical notes on three Indian lichens. Lichenologist 27, 77–79.Google Scholar
  7. Brunauer, G., L. Muggia, E. Stocker-Worgotter, and M. Grube. 2009. A transcribed polyketide synthase gene from Xanthoria elegans. Mycol. Res. 113, 82–92.PubMedCrossRefGoogle Scholar
  8. Chiang, Y.M., B.R. Oakley, N.P. Keller, and C.C. Wang. 2010. Unraveling polyketide synthesis in members of the genus Aspergillus. Appl. Microbiol. Biotechnol. 86, 1719–1736.PubMedCrossRefGoogle Scholar
  9. Chooi, Y.H., M.S. David, A.D. Meryl, I. Fujii, J.A. Elix, H.J.J.S. Louwhoff, and C.L. Ann. 2008. Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. Mycol. Res. 112, 147–161.PubMedCrossRefGoogle Scholar
  10. Cox, R.A. 2007. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org. Biomol. Chem. 5, 2010–2026.PubMedCrossRefGoogle Scholar
  11. Fujii, I. 2010. Functional analysis of fungal polyketide biosynthesis genes. J. Antibiot. 63, 207–218.PubMedCrossRefGoogle Scholar
  12. Gagunashvili, A.N., S.P. Davidsson, Z.O. Jonsson, and O.S. Andresson. 2009. Cloning and heterologous transcription of a polyketide synthase gene from the lichen Solorina crocea. Mycol. Res. 113, 354–363.PubMedCrossRefGoogle Scholar
  13. Halici, M., F. Odabasoglu, H. Suleyman, A. Cakir, A. Aslan, and Y. Bayir. 2005. Effects of water extract of Usnea longissima on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Phytomedicine 12, 656–662.PubMedCrossRefGoogle Scholar
  14. Hamada, N. 1993. Effects of osmotic culture conditions on isolated lichen mycobionts. Bryologist 96, 569–572.CrossRefGoogle Scholar
  15. Honegger, R. 2000. Great discoveries in bryology and lichenology Simon Schwendener (1829–1919) and the dual hypothesis of lichens. Bryologist 103, 307–313.CrossRefGoogle Scholar
  16. Huneck, S. 1999. The significance of lichens and their metabolites. Naturwissenschaften 86, 559–570.PubMedCrossRefGoogle Scholar
  17. Kasahara, K., I. Fujii, H. Oikawa, and Y. Ebizuka. 2006. Expression of Alternaria solani PKSF generates a set of complex reduced-type polyketides with different carbon-lengths and cyclization. Chembiochem. 7, 920–924.PubMedCrossRefGoogle Scholar
  18. Kim, Y.T., Y.R. Lee, J. Jin, K.H. Han, H. Kim, J.C. Kim, T. Lee, S.H. Yun, and Y.W. Lee. 2005. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol. Microbiol. 58, 1102–1113.PubMedCrossRefGoogle Scholar
  19. Kroken, S., N.L. Glass, J.W. Taylor, O.C. Yoder, and B.G. Turgeon. 2003. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl. Acad. Sci. USA 100, 15670–15675.PubMedCrossRefGoogle Scholar
  20. Lans, C., N. Turner, T. Khan, G. Brauer, and W. Boepple. 2007. Ethnoveterinary medicines used for ruminants in British Columbia, Canada. J. Ethnobiol. Ethnomed. 3, 11. doi: 10.1186/1746-4269-3-11.PubMedCrossRefGoogle Scholar
  21. Lawrey, J.D. and P. Diederich. 2003. Lichenicolous fungi: interac tions, evolution and biodiversity. Bryologist 106, 80–120.CrossRefGoogle Scholar
  22. Li, W.C., J. Zhou, S.Y. Guo, and L.D. Guo. 2007. Endophytic fungi associated with lichens in Baihua mountain of Beijing. Fungal Divers. 25, 69–80.Google Scholar
  23. Miao, V., M. Coëffet-LeGal, D. Brown, S. Sinnemann, G. Donaldson, and J. Davies. 2001. Genetic approaches to harvesting lichen products. Trends Biotechnol. 19, 349–355.PubMedCrossRefGoogle Scholar
  24. Muhammad, I.C., S.J. Azizuddin, and A. Rahman. 2005. Bioactive phenolic compounds from a medicinal lichen, Usnea longissima. Phytochemistry 66, 2346–2350.CrossRefGoogle Scholar
  25. Müller, K. 2001. Pharmaceutically relevant metabolites from lichens. Appl. Microbiol. Biotechnol. 56, 9–16.PubMedCrossRefGoogle Scholar
  26. Nishitoba, Y., H. Nishimura, T. Nishiyama, and J. Mizutani. 1987. Lichen acids, plant growth inhibitors from Usnea longissima. Phytochemistry 26, 3181–3185.CrossRefGoogle Scholar
  27. Odabasoglu, F., C.H.S. Ahmet, A. Aslan, B. Yasin, H. Mesut, and K. Cavit. 2006. Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in Rats. J. Ethnopharmacol. 103, 59–65.PubMedCrossRefGoogle Scholar
  28. Petrini, O., U. Hake, and M.M. Dreyfuss. 1990. An analysis of fungal communities isolated from fruticose lichens. Mycologia 82, 444–451.CrossRefGoogle Scholar
  29. Reeves, C.D., Z.H. Hu, R. Reid, and J.T. Kealey. 2008. Genes for the biosynthesis of the fungal polyketides hypothemycin from Hypomyces subiculosus and radicicol from Pochonia chlamydosporia. Appl. Environ. Microbiol. 74, 5121–5129.PubMedCrossRefGoogle Scholar
  30. Rose, T.M., E.R. Schultz, J.G. Henikoff, S. Pietrokovski, C.M. McCallum, and S. Henikoff. 1998. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Res. 26, 1628–1635.PubMedCrossRefGoogle Scholar
  31. Shukla, V., G.P. Joshi, and M.S.M. Rawat. 2010. Lichens as a potential natural source of bioactive compounds: a review. Phytochem. Rev. 9, 303–314.CrossRefGoogle Scholar
  32. Stocker-Wörgotter, E. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: culturing polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25, 188–200.PubMedCrossRefGoogle Scholar
  33. Valarmathi, R., G.N. Hariharan, G. Venkataraman, and A. Parida. 2009. Characterization of a non-reducing polyketide synthase gene from lichen Dirinaria applanata. Phytochemistry 70, 721–729.PubMedCrossRefGoogle Scholar
  34. Wang, S., Y. Xu, E.A. Maine, E.M. Wijeratne, P. Espinosa-Artiles, A.A. Gunatilaka, and I. Molnár. 2008. Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chem. Biol. 22, 1328–1338.CrossRefGoogle Scholar
  35. Weissman, K.J. and P.F. Leadlay. 2005. Combinatorial biosynthesis of reduced polyketides. Nat. Rev. Microbiol. 3, 925–936.PubMedCrossRefGoogle Scholar
  36. Yamamoto, Y., Y. Miura, Y. Kinoshita, M. Higuchi, Y. Yamada, A. Murakami, H. Ohigashi, and K. Koshimizu. 1995. Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein Barr virus activation. Chem. Pharm. Bull. 43, 1388–1390.PubMedGoogle Scholar
  37. Yamamoto, Y., R. Mizuguchi, and Y. Yamada. 1985. Tissue cultures of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric. Biol. Chem. 49, 3347–3348.Google Scholar
  38. Zhou, H., J.X. Zhan, K. Watanabe, X. Xie, and Y. Tang. 2008. A polyketide macrolactone synthase from the filamentous fungus Gibberella zeae. Proc. Natl. Acad. Sci. USA 17, 6249–6254.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yi Wang
    • 1
  • Jung A. Kim
    • 1
  • Yong Hwa Cheong
    • 1
  • Yogesh Joshi
    • 1
  • Young Jin Koh
    • 1
  • Jae-Seoun Hur
    • 1
    Email author
  1. 1.Korean Lichen Research InstituteSunchon National UniversitySunchonRepublic of Korea

Personalised recommendations