Advertisement

The Journal of Microbiology

, Volume 49, Issue 1, pp 29–34 | Cite as

Acinetobacter oleivorans sp. nov. Is capable of adhering to and growing on diesel-oil

  • Yoon-Suk Kang
  • Jaejoon Jung
  • Che Ok Jeon
  • Woojun Park
Articles

Abstract

A diesel-oil and n-hexadecane-degrading novel bacterial strain, designated DR1T, was isolated from a rice paddy in Deok-So, South Korea. The strain DR1T cells were Gram-negative, aerobic coccobacilli, and grew at 20–37°C with the optimal temperature of 30°C, and an optimal pH of 6–8. Interestingly, strain DR1T was highly motile (swimming and swarming motility) using its fimbriae, and generated N-acyl homoserine lactones as quorum-sensing signals. The predominant respiratory quinone as identified as ubiquinone-9 (Q-9) and DNA G+C content was 41.4 mol%. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species A. calcoaceticus, A. haemolyticus, A. baumannii, A. baylyi, and A. beijerinckii, with which it evidenced sequence similarities of 98.2%, 97.4%, 97.2%, 97.1%, and 97.0%, respectively. DNA-DNA hybridization values between strain DR1T and other Acinetobacter spp. were all less than 20%. The physiological and taxonomic characteristics with the DNA-DNA hybridization data supported the identification of strain DR1T in the genus Acinetobacter as a novel species, for which the name Acinetobacter oleivorans sp. nov. is proposed. The type strain is DR1T (=KCTC 23045T =JCM 16667T).

Keywords

bacteria biodegradation genome diesel soil biofilm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2011_315_MOESM1_ESM.pdf (1.8 mb)
Supplementary material, approximately 1.80 MB.

References

  1. Baker, J. and H. Maxted. 1975. Observations on the growth and movement of Acinetobacter on semi-solid media. J. Med. Microbiol. 8, 443–446.CrossRefGoogle Scholar
  2. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.PubMedCrossRefGoogle Scholar
  3. Fischer, R., F.S. Bleichrodt, and U.C. Gerischer. 2008. Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression. Microbiology 154, 3095–3103.PubMedCrossRefGoogle Scholar
  4. Gonzalez, R.H., A. Nusblat, and B.C. Nudel. 2001. Detection and characterization of quorum sensing signal molecules in Acinetobacter strains. Microbiol. Res. 155, 271–277.PubMedGoogle Scholar
  5. Jung, J. and W. Park. 2010. Complete genome sequence of the diesel-degrading Acinetobacter sp. strain DR1. J. Bacteriol. 192, 4794–4795.PubMedCrossRefGoogle Scholar
  6. Kang, Y.S., J. Kim, H.D. Shin, Y.D. Nam, J.W. Bae, C.O. Jeon, and W. Park. 2007. Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis. Int. J. Syst. Evol. Microbiol. 57, 2849–2853.PubMedCrossRefGoogle Scholar
  7. Kang, Y.S. and W. Park. 2010a. Protection against diesel oil toxicity by sodium chloride-induced exopolysaccharides in Acinetobacter sp. strain DR1. J. Biosci. Bioeng. 109, 118–123.PubMedCrossRefGoogle Scholar
  8. Kang, Y.S. and W. Park. 2010b. Trade-off between antibiotic resistance and biological fitness in Acinetobacter sp. strain DR1. Environ. Microbiol. 12, 1304–1318.PubMedCrossRefGoogle Scholar
  9. Kim, M.K., W.T. Im, H. Ohta, M. Lee, and S.T. Lee. 2005. Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J. Microbiol. 43, 152–157.PubMedGoogle Scholar
  10. Lawrence, R.C., T.F. Fryer, and B. Reiter. 1967. The production and characterization of lipase from a Micrococcus and a Pseudomonad. J. Gen. Microbiol. 48, 401–418.PubMedGoogle Scholar
  11. Mesbah, M., U. Premachandran, and W.B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.CrossRefGoogle Scholar
  12. Nemec, A., M. Musílek, O. Šedo, T. De Baere, M. Maixnerová, T.J.K. van der Reijden, Z. Zdráhal, M. Vaneechoutte, and L. Dijkshoorn. 2009a. Acinetobacter berezinae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate, respectively, Acinetobacter genomic species 110 and Acinetobacter genomic species 11. Int. J. Syst. Evol. Microbiol. doi:10.1099/ijs.0.013656-0.Google Scholar
  13. Nemec, A., M. Musilek, M. Maixnerova, T. De Baere, T.J.K. van der Reijden, M. Vaneechoutte, and L. Dijkshoorn. 2009b. Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int. J. Syst. Evol. Microbiol. 59, 118–124.PubMedCrossRefGoogle Scholar
  14. Niu, C., K.M. Clemmer, R.A. Bonomo, and P.N. Rather. 2008. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J. Bacteriol. 190, 3386–3392.PubMedCrossRefGoogle Scholar
  15. Rosenberg, M., D. Gutnik, and E. Rosenberg. 1980. Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol. Lett. 9, 29–33.CrossRefGoogle Scholar
  16. Sarkar, S. and R. Chakraborty. 2008. Quorum sensing in metal tolerance of Acinetobacter junii BB1A is associated with biofilm production. FEMS Microbiol. Lett. 282, 160–165.PubMedCrossRefGoogle Scholar
  17. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc., Newark, DE, USA.Google Scholar
  18. Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.CrossRefGoogle Scholar
  19. Stanier, R.Y., N.J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43, 159–271.PubMedGoogle Scholar
  20. Throne-Holst, M., S. Markussen, A. Winnberg, T.E. Ellingsen, H.K. Kotlar, and S.B. Zotchev. 2006. Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl. Microbiol. Biotechnol. 72, 353–360.PubMedCrossRefGoogle Scholar
  21. Throne-Holst, M., A. Wentzel, T.E. Ellingsen, H.K. Kotlar, and S.B. Zotchev. 2007. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl. Environ. Microbiol. 73, 3327–3332.PubMedCrossRefGoogle Scholar
  22. Vaneechoutte, M., I. Tjernberg, F. Baldi, M. Pepi, R. Fani, E.R. Sullivan, J. van der Toorn, and L. Dijkshoorn. 1999. Oil-degrading Acinetobacter strain RAG-1 and strains described as ‘Acinetobacter venetianus sp. nov.’ belong to the same genomic species. Res. Microbiol. 150, 69–73.PubMedCrossRefGoogle Scholar
  23. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, M.P. Starr, and H.G. Truper 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yoon-Suk Kang
    • 1
  • Jaejoon Jung
    • 1
  • Che Ok Jeon
    • 2
  • Woojun Park
    • 1
  1. 1.Division of Environmental Science and Ecological EngineeringKorea UniversitySeoulRepublic of Korea
  2. 2.Department of Life ScienceChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations