Advertisement

The Journal of Microbiology

, Volume 49, Issue 3, pp 340–348 | Cite as

Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods

  • Yi-Seul Kim
  • Min-Cheol Kim
  • Soon-Wo Kwon
  • Soo-Jin Kim
  • In-Cheol Park
  • Jong-Ok Ka
  • Hang-Yeon Weon
Articles

Abstract

Despite the importance of meju as a raw material used to make Korean soy sauce (ganjang) and soybean paste (doenjang), little is known about the bacterial diversity of Korean meju. In this study, the bacterial communities in meju were examined using both culture-dependent and independent methods in order to evaluate the diversity of the bacterial population. Analyses of the 16S rRNA gene sequences of the bacterial strains isolated from meju samples showed that the dominant species were related to members of the genera Bacillus, Enterococcus, and Pediococcus. The community DNAs extracted from nine different meju samples were analyzed by barcoded pyrosequencing method targeting of the V1 to V3 hypervariable regions of the 16S rRNA gene. In total, 132,374 sequences, with an average read length of 468 bp, were assigned to several phyla, with Firmicutes (93.6%) representing the predominant phylum, followed by Proteobacteria (4.5%) and Bacteroidetes (0.8%). Other phyla accounted for less than 1% of the total bacterial sequences. Most of the Firmicutes were Bacillus and lactic acid bacteria, mainly represented by members of the genera Enterococcus, Lactococcus, and Leuconostoc, whose ratio varied among different samples. In conclusion, this study indicated that the bacterial communities in meju were very diverse and a complex microbial consortium containing various microorganisms got involved in meju fermentation than we expected before.

Keywords

bacterial communities cultivation-based fermented soybean bricks meju pyrosequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, M.R., D.Y. Jeong, S.P. Hong, G.P. Song, and Y.S. Kim. 2003. Quality of traditional kochujang supplement with mushrooms (Pleurotus ostreatus and Lentinus edodes). J. Korean Soc. Agric. Chem. Biotechnol. 43, 229–234.Google Scholar
  2. Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.PubMedCrossRefGoogle Scholar
  3. Ampe, F., A. Sirvent, and N. Zakhia. 2001. Dynamics of the microbial community responsible for traditional sour cassava starch fermentation studied by denaturing gradient gel electrophoresis and quantitative rRNA hybridization. Int. J. Food Microbiol. 65, 45–54.PubMedCrossRefGoogle Scholar
  4. ben Omar, N. and F. Ampe. 2000. Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl. Environ. Microbiol. 66, 3664–3673.PubMedCrossRefGoogle Scholar
  5. Bray, J.R. and J.T. Curtis. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349.CrossRefGoogle Scholar
  6. Chao, A. and J. Bunge. 2002. Estimating the number of species in a stochastic abundance model. Biometrics 58, 531–539.PubMedCrossRefGoogle Scholar
  7. Choi, K.K., C.B. Cui, S.S. Ham, and D.S. Lee. 2003. Isolation, identification and growth characteristics of main strain related to meju fermentation. J. Kor. Soc. Food Sci. Nutr. 32, 818–824.Google Scholar
  8. Chun, J., K.Y. Kim, J.H. Lee, and Y. Choi. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101.PubMedCrossRefGoogle Scholar
  9. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.PubMedCrossRefGoogle Scholar
  10. Claudia, S.G., G. Piñar, W. Lubitz, and S. Rölleke. 2001. An advanced molecular strategy to identify bacterial communities on art objects. J. Microbiol. Methods 45, 77–87CrossRefGoogle Scholar
  11. Cocolin, L., M. Manzano, C. Cantoni, and G. Comi. 2001. Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Appl. Environ. Microbiol. 67, 5113–5121.PubMedCrossRefGoogle Scholar
  12. Cole, J.R., B. Chai, R.J. Farris, Q. Wang, A.S. Kulam-Syed-Mohideen, D.M. McGarrell, A.M. Bandela, E. Cardenas, G.M. Garrity, and J.M. Tiedje. 2007. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res. 35: Database issue D169–D172.PubMedCrossRefGoogle Scholar
  13. Collins, M.D., D. Jones, J.A.E. Farrow, R. Kilpper-Balz, and K.H. Schleifer. 1984. Enterococcus avium nom. rev., comb. nov.; E. casseliflavus nom. rev., comb. nov.; E. durans nom. rev., comb. nov.; E. gallinarum comb. nov.; and E. malodoratus sp. nov. Int. J. Syst. Bacteriol. 34, 220–223.CrossRefGoogle Scholar
  14. de Man, J.C., M. Rogosa, and M.E. Sharpe. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23, 130.Google Scholar
  15. DeSantis, T.Z., P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G.L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.PubMedCrossRefGoogle Scholar
  16. Di Cagno, R., M. De Angelis, G. Gallo, L. Settanni, M.G. Berloco, S. Siragusa, E. Parente, A. Corsetti, and M. Gobbetti. 2007. Genotypic and phenotypic diversity of Lactobacillus rossiae strains isolated from sourdough. J. Appl. Microbiol. 103, 821–835.PubMedCrossRefGoogle Scholar
  17. Dowd, S.E., Y. Sun, P.R. Secor, D.D. Rhoads, B.M. Wolcott, G.A. James, and R.D. Wolcott. 2008. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 8, 43.PubMedCrossRefGoogle Scholar
  18. Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem. Bull. 19, 11–15.Google Scholar
  19. Edwards, R.A., B. Rodriguez-Brito, L. Wegley, M. Haynes, M. Breitbart, D.M. Peterson, M.O. Saar, S. Alexander, E.C. Alexander, Jr., and F. Rohwer. 2006. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7, 57.PubMedCrossRefGoogle Scholar
  20. Ferchichi, M., R. Valcheva, H. Prevost, B. Onno, and X. Dousset. 2007. Molecular identification of the microbiota of French sourdough using temporal temperature gradient gel electrophoresis. Food Microbiol. 24, 678–686.PubMedCrossRefGoogle Scholar
  21. Fisher, K. and C. Phillips. 2009. The ecology, epidemiology and virulence of Enterococcus. Microbiology 155, 1749–1757.PubMedCrossRefGoogle Scholar
  22. Garofalo, C., G. Silvestri, L. Aquilanti, and F. Clementi. 2008. PCRGGE analysis of lactic acid bacteria and yeast dynamics during the production processes of three varieties of Panettone. J. Appl. Microbiol. 105, 243–254.PubMedCrossRefGoogle Scholar
  23. Gharizadeh, B., T. Nordstrom, A. Ahmadian, M. Ronaghi, and P. Nyren. 2002. Long-read pyrosequencing using pure 2′-deoxyadenosine-5′-O′-(1-thiotriphosphate) Sp-isomer. Anal. Biochem. 301, 82–90.PubMedCrossRefGoogle Scholar
  24. Goldin, B.R. 1998. Health benefits of probiotics. Br. J. Nutr. 80, 203–207.Google Scholar
  25. Humblot, C. and J.P. Guyot. 2009. Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Appl. Environ. Microbiol. 75, 4354–4361.PubMedCrossRefGoogle Scholar
  26. Hur, S.M. and D.M. Ha. 1991. Occurence of acid producing bacteria in Meju loaves. J. Korean Soc. Appl. Biol. Chem. 34, 130–133.Google Scholar
  27. Kang, M.J., S.H. Kim, H.K. Joo, G.S. Lee, and M.H. Yim. 2000. Isolation and identification of microorganisms producing the soy protein-hydrolyzing enzyme from traditional mejus. J. Korean Agric. Chem. Soc. 43, 86–94.Google Scholar
  28. Keijser, B.J., E. Zaura, S.M. Huse, J.M. van der Vossen, F.H. Schuren, R.C. Montijn, J.M. ten Cate, and W. Crielaard. 2008. Pyrosequencing analysis of the oral microflora of healthy adults. J. Dent. Res. 87, 1016–1020.PubMedCrossRefGoogle Scholar
  29. Kim, B.S., B.K. Kim, J.H. Lee, M. Kim, Y.W. Lim, and J. Chun. 2008. Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing. Kor. J. Microbiol. 46, 357–363.CrossRefGoogle Scholar
  30. Kim, G.T., Y.I. Hwang, S.I. Lim, and D.S. Lee. 2000. Carbon dioxide production and quality changes in Korean fermented soybean paste and hot pepper-soybean paste. J. Korean Soc. Food Sci. Nutr. 29, 807–813.Google Scholar
  31. Kim, H.H., H.S. Yook, K.Y. Kim, M.G. Shin, and M.W. Byun. 2001. Fermentative characteristics of extruded meju by the molding temperature. Korean J. Soc. Food Sci. Nutr. 30, 250–255.Google Scholar
  32. Kim, T.W., J.H. Lee, S.E. Kim, M.H. Park, H.C. Chang, and H.Y. Kim. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131, 265–271.PubMedCrossRefGoogle Scholar
  33. Kim, T.W., J.H. Lee, M.H. Park, and H.Y. Kim. 2010. Analysis of bacterial and fungal communities in Japanese- and Chinese-fermented soybean pastes using nested PCR-DGGE. Curr. Microbiol. 60, 315–320.PubMedCrossRefGoogle Scholar
  34. Klaenhammer, T.R., R. Barrangou, B.L. Buck, M.A. Azcarate-Peril, and E. Altermann. 2005. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev. 29, 393–409.PubMedCrossRefGoogle Scholar
  35. Lafarge, V., J.C. Ogier, V. Girard, V. Maladen, J.Y. Leveau, A. Gruss, and A. Delacroix-Buchet. 2004. Raw cow milk bacterial population shifts attributable to refrigeration. Appl. Environ. Microbiol. 70, 5644–5650.PubMedCrossRefGoogle Scholar
  36. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–148. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, Chichester, England.Google Scholar
  37. Lee, S.S. 1995. Meju fermentation for a raw material of Korean traditional soy products. Korean J. Mycol. 23, 161–175.Google Scholar
  38. Lee, J.G., G.J. Lee, and S.M. Lim. 2005. Partial purification of bacteriocin produced by Enterococcus faecium MJ-14 isolated from Meju. J. Fd. Hyg. Safety 20, 211–216.Google Scholar
  39. Lee, K.H., N.D. Kim, and J.Y. Yoo. 1997. Survey on the manufacturing process of traditional meju for and of kanjang (Korean soy sauce). J. Korean Soc. Food Sci. Nutr. 26, 390–396.Google Scholar
  40. Lee, S.M., I.J. Lim, and B.S. Yoo. 2003. Effect of mixing ratio on rheological properties of kochujang. Korean J. Food Sci. Technol. 35, 44–51.Google Scholar
  41. Lee, S.S., C.K. Sung, J.C. Bae, and J.Y. Yu. 1997. Kanjang and meju made with a single inoculum of the microorganism isolated from the Korean traditional meju. Korean J. Soc. Food Sci. Nutr. 26, 751–758.Google Scholar
  42. Lee, W.J. and D.H. Cho. 1970. Microbiological studies of Korean native soysauce fermentation-A study on the microflora changes during Korean native soy-sauce fermentation. J. Korean Agric. Chem. Soc. 13, 35–42.Google Scholar
  43. Lim, S.M. and D.S. Im. 2009. Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biotechnol. 19, 178–186.PubMedCrossRefGoogle Scholar
  44. Lim, S.M., M.Y. Park, and D.S. Chang. 2005. Characterization of bacteriocin produced by Enterococcus faecium MJ-14 isolated from Meju. Korean J. Food Sci. Technol. 14, 49–57.Google Scholar
  45. Magurran, A.E. 1998. Ecological diversity and its measurement. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
  46. Meroth, C.B., J. Walter, C. Hertel, M.J. Brandt, and W.P. Hammes. 2003. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69, 475–482.PubMedCrossRefGoogle Scholar
  47. Muller, M.R., M.A. Ehrmann, and R.F. Vogel. 2000. Multiplex PCR for the detection of Lactobacillus pontis and two related species in a sourdough fermentation. Appl. Environ. Microbiol. 66, 2113–2116.PubMedCrossRefGoogle Scholar
  48. Palmisano, M.M., L.K. Nakamura, K.E. Duncan, C.A. Istock, and F.M. Cohan. 2001. Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. Int. J. Syst. Evol. Microbiol. 51, 1671–1679.PubMedCrossRefGoogle Scholar
  49. Park, H.K., B. Gil, and J.K. Kim. 2003. Characteristics of taste components of commercial kochujang. Korean J. Food Sci. Technol. 12, 119–121.Google Scholar
  50. Park, J.M. and H.I. Oh. 1995. Changes in microflora and enzyme activities of traditional kochujang meju during fermentation. Korean J. Food Sci. Technol. 27, 56–62.Google Scholar
  51. Park, K.I. and K.J. Kim. 1970. Studies on manufacturing of the Korean soy sauce (part I). In Research Report. Central Industrial Research Institute. 20, 89–93.Google Scholar
  52. Park, S.K., K.I. Seo, S.H. Choi, J.S. Moon, and Y.H. Lee. 2000. Quality assessment of commercial doenjang prepared by traditional method. J. Korean Soc. Food Sci. Nutr. 29, 211–217.Google Scholar
  53. Randazzo, C.L., H. Heilig, C. Restuccia, P. Giudici, and C. Caggia. 2005. Bacterial population in traditional sourdough evaluated by molecular methods. J. Appl. Microbiol. 99, 251–258.PubMedCrossRefGoogle Scholar
  54. Reasoner, D.J. and E.E. Geldrich. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49, 1–7.PubMedGoogle Scholar
  55. Roh, S.W., K.H. Kim, Y.D. Nam, H.W. Chang, E.J. Park, and J.W. Bae. 2010. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J. 4, 1–16.PubMedCrossRefGoogle Scholar
  56. Roesch, L.F., R.R. Fulthorpe, A. Riva, G. Casella, A.K. Hadwin, A.D. Kent, S.H. Daroub, F.A. Camargo, W.G. Farmerie, and E.W. Triplett. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290.PubMedGoogle Scholar
  57. Rogosa, M., J.A. Mitchell, and R.F. Wiseman. 1951. A selective medium for the isolation and enumeration of oral and fecal lactobacilli. J. Bacteriol. 62, 132.PubMedGoogle Scholar
  58. Ronaghi, M., M. Uhlén, and P. Nyrén. 1998. A sequencing method based on real-time pyrophosphate. Science 281, 363–365.PubMedCrossRefGoogle Scholar
  59. Saha, R.B., R.J. Sondag, and J.E. Middlekauff. 1974. An improved medium for the selective culturing of lactic acid bacteria. Proceedings of the American Society of Brewing Chemists. 9th Congress, 9–10.Google Scholar
  60. Scheirlinck, I., R. Van der Meulen, A. Van Schoor, M. Vancanneyt, L. De Vuyst, P. Vandamme, and G. Huys. 2008. Taxonomic structure and stability of the bacterial community in belgian sourdough ecosystems as assessed by culture and population fingerprinting. Appl. Environ. Microbiol. 74, 2414–2423.PubMedCrossRefGoogle Scholar
  61. Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, and et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.PubMedCrossRefGoogle Scholar
  62. Sogin, M.L., H.G. Morrison, J.A. Huber, D. Mark Welch, S.M. Huse, P.R. Neal, J.M. Arrieta, and G.J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 103, 12115–12120.PubMedCrossRefGoogle Scholar
  63. Weon, H.W. 2010. Ph. D. thesis. Seoul National University. Seoul.Google Scholar
  64. Yoo, J.Y. 1998. Characteristics of meju and its microorganisms. Lecture 1, 1st Symposium and Expo for Soybean Fermentation Foods. The Research Institute of Soybean Fermentation Foods. Youngnam Univ.Google Scholar
  65. Yoo, J.Y. and H.G. Kim. 1998. Characteristics of traditional mejus nation-wide collection. J. Korean Soc. Food Sci. Nutr. 27, 259–267.Google Scholar
  66. Yue, J.C. and M.K. Clayton. 2005. A similarity measure based on species proportions. Commun. Stat. Theor. Methods 34, 2123–2132.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yi-Seul Kim
    • 1
  • Min-Cheol Kim
    • 2
  • Soon-Wo Kwon
    • 1
  • Soo-Jin Kim
    • 1
  • In-Cheol Park
    • 1
  • Jong-Ok Ka
    • 3
  • Hang-Yeon Weon
    • 1
  1. 1.Agricultural Microbiology Team, National Academy of Agricultural ScienceRural Development AdministrationSuwonRepublic of Korea
  2. 2.School of Biological SciencesSeoul National UniversitySeoulRepublic of Korea
  3. 3.School of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations