Advertisement

The Journal of Microbiology

, Volume 49, Issue 2, pp 224–232 | Cite as

Seasonal abundance and distribution of Vibrio species in the treated effluent of wastewater treatment facilities in suburban and urban communities of Eastern Cape Province, South Africa

  • Etinosa O. Igbinosa
  • Chikwelu L. Obi
  • Anthony I. OkohEmail author
Articles

Abstract

We assessed the seasonal abundance and distribution of Vibrio species as well as some selected environmental parameters in the treated effluents of two wastewater treatment plants (WWTP), one each located in a suburban and urban community of Eastern Cape Province, South Africa. Vibrio population density ranged from 2.1×105 to 4.36×104 CFU/ml in the suburban community and from 2.80×105 to 1.80×105 CFU/ml in the urban community. Vibrio species associated with 180 μ, 60 μ, and 20 μ plankton sizes were observed at densities of 0–136×103 CFU/ml, 0–8.40×102 CFU/ml, and 0–6.80×102 CFU/ml, respectively at the suburban community’s WWTP. In the urban community, observed densities of culturable Vibrio were 0–2.80×102 CFU/ml (180 μ), 0–6.60×102 CFU/ml (60 μm), and 0–1.80× 103 CFU/ml (20 μm). The abundance of free-living Vibrio species ranged from 0 to 1.0×102 and 1.0×103 CFU/ml in the suburban and urban communities’ WWTPs, respectively. Molecular confirmation of the presumptive Vibrio isolates revealed the presence of V. fluvialis (41.38%), V. vulnificus (34.48%), and V. parahaemolyticus (24.14%) in the suburban community effluents. In the urban community molecular confirmation revealed that the same species were present at slightly different percentages, V. fluvialis (40%), V. vulnificus (36%), and V. parahaemolyticus (24%). There was no significant correlation between Vibrio abundance and season, either as free-living or plankton-associated entities, but Vibrio species abundance was positively correlated with temperature (r=0.565; p<0.01), salinity, and dissolved oxygen (p<0.05). Turbidity and pH showed significant seasonal variation (p<0.05) across the seasons in both locations. This study underscores the potential of WWTPs to be sources of Vibrio pathogens in the watershed of suburban and urban communities in South Africa.

Keywords

environmental parameters public health Vibrio pathogens treated effluents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadi, A., H. Riahi, and M. Noori. 2005. Studies of the effects of environmental factors on the seasonal change of phytoplankton population in municipal waste water stabilization ponds. Toxicol. Environ. Chem. 87, 543–550.CrossRefGoogle Scholar
  2. Alam, M., A. Sadique, Nur-A-Hasan, N.A. Bhuiyan, G.B. Nair, A.K. Siddique, D.A. Sack, and et al. 2006b. Effect of transport at ambient temperatures on detection and isolation of Vibrio cholerae from environmental samples. Appl. Environ. Microbiol. 72, 2185–2190.PubMedCrossRefGoogle Scholar
  3. Alam, M., M. Sultana, G.B. Nair, R.B. Sack, D.A. Sack, A.K. Siddique, A. Ali, A. Huq, and R.R. Colwell. 2006a. Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria Bangladesh. Appl. Environ. Microbiol. 72, 2849–2855.PubMedCrossRefGoogle Scholar
  4. Anonymous. 2005. Quantitative risk assessment on the public health impact of pathogenic Vibrio parahaemolyticus in raw oysters. U.S. Food and Drug Administration, Washington, DC, USA.Google Scholar
  5. CDC (Centers for Disease Control and Prevention). 2004. 2003 final FoodNet surveillance report. Centers for Disease Control and Prevention, Atlanta, GA, USA.Google Scholar
  6. Chakraborty, R., S. Sinha, A. Mukhopadhyay, K. Asakura, S.M. Yamasaki, S.K. Bhattacharya, G. Nair, and T. Ramamurthy. 2006. Species-specific identification of Vibrio fluvialis by PCR targeted to the conserved transcriptional activation and variable membrane tetherregions of the toxR gene. J. Med. Microbiol. 55, 805–808.PubMedCrossRefGoogle Scholar
  7. Chindah, A.C., S.A. Braide, J. Amakiri, and E. Izundu. 2007. Succession of phytoplankton in a municipal waste water treatment system under sunlight. Rev. UDO AgrÍc. 7, 258–273.Google Scholar
  8. Choopun, N., V. Louis, A. Huq, and R.R. Colwell. 2002. Simple procedure for rapid identification of Vibrio cholerae from the aquatic environment. Appl. Environ. Micriobiol. 68, 995–998.CrossRefGoogle Scholar
  9. Cook, D.W., J.C. Bowers, and A. DePola. 2002. Density of total and pathogenic (tdh +) Vibrio parahaemolyticus in Atlantic and Gulf coast molluscan shellfish at harvest. J. Food Prot. 65, 1873–1880.PubMedGoogle Scholar
  10. DePaola, A., L.H. Hopkins, J.T. Peeler, B. Wentz, and R.M. Mc-Phearson. 1990. Incidence of Vibrio parahaemolyticus in United States coastal waters and oysters. Appl. Environ.Microbiol. 56, 2299–2302.PubMedGoogle Scholar
  11. DePola, A., J.L. Nordstrom, J.C. Bowers, J.C. Wells, and D.W. Cook. 2003. Seasonal variation in the abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters. Appl. Environ. Microbiol. 69, 1521–1526.CrossRefGoogle Scholar
  12. Duan, J. and Y. Su. 2005. Occurrence of Vibrio parahaemolyticus in two Oregon oyster-growing bays. J. Food Sci. 70, M58–M63.CrossRefGoogle Scholar
  13. Hänninen, M.L., H. Haajanen, T. Pummi, K. Wermundsen, M.L. Katila, H. Sarkkinen, I. Miettinen, and H. Rautelin. 2003. Detection and typing of Campylobacter jejuni and Campylobacter coli and analysis of indicator organisms in three waterborne outbreaks in Finland. Appl. Environ. Microbiol. 69, 1391–1396.PubMedCrossRefGoogle Scholar
  14. Heidelberg, J.F., K.B. Heidelberg, and R.R. Colwell. 2002. Bacteria of the γ-Subclass Proteobacteria, associated with zooplankton in Chesapeake Bay. Appl. Environ. Microbiol. 68, 5498–5507.PubMedCrossRefGoogle Scholar
  15. Huq, A. and R.R. Colwell. 1996. Vibrios in the marine and estuarine environment: tracking Vibrio cholerae. Ecosyst. Health 2, 198–214.Google Scholar
  16. Hutchison, M.L., L.D. Walters, S.M. Avery, F. Munro, and A. Moore. 2005. Analyses of livestock production, waste storage, and pathogen levels and prevalence in farm manures. Appl. Environ. Microbiol. 71, 1231–1236.PubMedCrossRefGoogle Scholar
  17. Jiang, S.C. 2001. Vibrio cholerae in recreational beach waters and tributaries of Southern California. Hydrobiologia 460, 157–164.CrossRefGoogle Scholar
  18. Jiang, S.C. and W. Fu. 2001. Seasonal abundance and distribution of Vibrio cholerae in coastal waters quantified by a 16S-23S intergenic spacer probe. Microb. Ecol. 42, 540–548.PubMedCrossRefGoogle Scholar
  19. Kaneko, T. and R.R. Colwell. 1973. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J. Bacteriol. 113, 24–32.PubMedGoogle Scholar
  20. Kaneko, T. and R.R. Colwell. 1975. Incidence of Vibrio parahaemolyticus in Chesapeake Bay. Appl. Microbiol. 30, 251–257.PubMedGoogle Scholar
  21. Kaysner, C.A., C.A. Abeyta, Jr., R.F. Stott, J.L. Lilja, and M.M. Wekell. 1990. Incidence of urea-hydrolyzing Vibrio parahaemolyticus in Willapa Bay, Washington. Appl. Environ. Microbiol. 56, 904–907.PubMedGoogle Scholar
  22. Kelly, M.T. and D. Stroh. 1988. Temporal relationship of Vibrio parahaemolyticus in patients and the environment. J. Clin. Microbiol. 26, 1754–1756.PubMedGoogle Scholar
  23. Kothary, M.H., H. Lowman, B.A. McCardell, and B.D. Tall. 2003. Purification andcharacterization of enterotoxigenic El Tor like hemolysin produced by Vibrio fluvialis. Infect. Immun. 71, 3213–3220.PubMedCrossRefGoogle Scholar
  24. Kwok, A.Y., J.T. Wilson, M. Coulthart, L.K. Ng, L. Mutharia, and A.W. Chow. 2002. Phylogenetic study and identification of human pathogenic Vibrio species based on partial hsp60 gene sequences. Can. J. Micriobiol. 48, 903–910.CrossRefGoogle Scholar
  25. Lhafi, S.K. and M. Kuhne. 2007. Occurrence of Vibrio spp. in blue mussels (Mytilus edulis) from the German Wadden Sea. Int. J. Food Microbiol. 116, 297–300.Google Scholar
  26. Lobitz, B., L. Beck, A. Huq, B. Wood, G. Fuchs, A.S.G. Faruque, and R.R. Colwell. 2000. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc. Natl. Acad. Sci. USA 97, 1438–1443.PubMedCrossRefGoogle Scholar
  27. Maugeri, T.L., M. Carbone, M.T. Fera, and C. Gugliandolo. 2006. Detection and differentiation of Vibrio vulnificus in seawater and plankton of coastal zone of the Mediterranean Sea. Res. Microbiol. 157, 194–200.PubMedCrossRefGoogle Scholar
  28. Maugeri, T.L., M. Carbone, M.T. Fera, G.P. Irrera, and C. Gugliandolo. 2004. Distribution ofpotentially pathogenic bacteria as free-living and plankton-associated in a marine coastal zone. J. Appl. Microbiol. 97, 354–361.PubMedCrossRefGoogle Scholar
  29. Martinez-Urtaza, J., A. Lozano-Leon, J. Varela-Pet, J. Trinanes, Y. Pazos, and O. Garcia-Martin. 2008. Environmental determinants of the occurrence and distribution of Vibrio parahaemolyticus in the Rias of Galicia. Spain. Appl. Environ. Microbiol. 74, 265–274.CrossRefGoogle Scholar
  30. Mooijiman, K.A., M. Bahar, N. Contreras, and A.H. Havelaar. 2001. Optimisation of the ISO-method on enumeration of somatic coliphages. Water Sci. Technol. 23, 205–208.Google Scholar
  31. Mukhopadhyay S.K., B. Chattopadhyay, A.R. Goswami, and A. Chatterjee. 2007. Spatial variations in zooplankton diversity in waters contaminated with composite effluents. J. Limnol. 66, 97–106.Google Scholar
  32. National Department of Health. 2003. Notifiable Medical Conditions: Interpretation of Notification Data. Pretoria: National Department of Health. http://www.doh.gov.za/facts/notify/.Google Scholar
  33. Obi, C.L., J.O. Igumbor, M.N.B. Momba, and A. Samie. 2008. Interplay of factors involving chlorine dose, turbidity flow capacity and pH on microbial quality of drinking water in small treatment plants. Water SA 34, 565–572.Google Scholar
  34. Obi, C.L., M.N.B. Momba, A. Samie, J.O. Igumbor, E. Green, and E. Musie. 2007. Microbiological, physico-chemical and management parameters on the efficiency of small water treatment plants in the Limpopo and Mpumalanga Provinces of South Africa. Water SA 33, 229–237.Google Scholar
  35. Oliver, J.D. and J.B. Kaper. 2001. Vibrio species, pp. 228–264. In M.P. Doyle, L.R. Beuchat, and T.J. Montville (eds.), Food microbiology: fundamentals and frontiers-2001. American Society for Microbiology, Washington, DC, USA.Google Scholar
  36. Osorio, C.R. and K.E. Klose. 2000. A region of the transmembrane regulatory protein ToxR that tethers the transcriptional activation domain to the cytoplasmic membrane displays wide divergence among Vibrio species. J. Bacteriol. 182, 526–528.PubMedCrossRefGoogle Scholar
  37. Parveen, S., K.A. Hettiarachchi, J.C. Bowers, J.L. Jones, M.K. Tamplin, L.R. McKay, W. Beatty, K. Brohawn, L.V. DaSilva, and A. DePaola. 2008. Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters. Int. J. Food Microbiol. 128, 354–361.PubMedCrossRefGoogle Scholar
  38. Phillips, A.M.B., A. DePaola, J. Bowers, S. Ladner, and D.J. Grimes. 2007. An evaluation of the use of remotely sensed parameters for prediction of incidence and risk associated with Vibrio parahaemolyticus in Gulf Coast oysters (Crassostrea virginica). J. Food Prot. 70, 879–884.PubMedGoogle Scholar
  39. Ristori, C.A., S.T. Iaria, D.S. Gelli, and I.N.G. Rivera. 2007. Pathogenic bacteria associated with oysters (Crassostrea brasiliana) and estuarine water along the South Coast of Brazil. Int. J. Environ. Health Res. 17, 259–269.PubMedCrossRefGoogle Scholar
  40. Rollins, D.M. and R.R. Colwell. 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52, 531–538.PubMedGoogle Scholar
  41. Seeley, H.W. and P.J. Vandermark. 1981. Microbes in Action. A laboratory Manual of Microbiology, 3rd ed. WH Freeman and Company, USA.Google Scholar
  42. Skirrow, M.B. and M.J. Blaser. 1992. Clinical and epidemiologic considerations, pp. 3–8. In I. Nachamkin, M.J. Blaser, and L.S. Tompkins (eds.), Campylobacter jejuni: current status and future trends-1992. American Society for Microbiology, Washington, DC, USA.Google Scholar
  43. Tamplin, M.L., A.L. Gauzens, A. Huq, D.A. Sack, and R.R. Colwell. 1990. Attachment of Vibrio cholerae serogroups O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microbiol. 56, 1977–1980.PubMedGoogle Scholar
  44. Tarr, C.L., J.S. Patel, N.D. Puhr, E.G. Sowers, C.A. Bopp, and N.A. Strockbine. 2007. Identification of Vibrio isolates by a multiples PCR assay and rpoB sequencedetermination. J. Clin. Microbiol. 45, 134–140.PubMedCrossRefGoogle Scholar
  45. Watkin, W.D. and V.J. Cabelli. 1985. Effect of fecal pollution on Vibrio parahaemolyticus densities in an estuarine environment. Appl. Environ. Microbiol. 49, 1307–1313.Google Scholar
  46. Wong, R.S. and A.W. Chow. 2002. Identification of enteric pathogens by heat shock protein 60kDa (hsp60) gene sequesnces. FEMS Microbiol. Lett. 206, 107–113.PubMedCrossRefGoogle Scholar
  47. Zimmerman, A.M., A. DePola, J.C. Bowers, J.A. Krantz, J.L. Nordstrom, C.N. Johnson, and D.J. Grimes. 2007. Variability of total and pathogenic Vibrio parahaemolyticus densities in Northern Gulf of Mexico water and oyster. Appl. Environ. Microbiol. 73, 7589–7596.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Etinosa O. Igbinosa
    • 1
  • Chikwelu L. Obi
    • 2
  • Anthony I. Okoh
    • 1
    Email author
  1. 1.Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and MicrobiologyUniversity of Fort HareAliceSouth Africa
  2. 2.Deputy Vice-Chancellor OfficeWalter Sisulu UniversityUmthataSouth Africa

Personalised recommendations