Advertisement

The Journal of Microbiology

, Volume 49, Issue 3, pp 381–386 | Cite as

Shewanella upenei sp. nov., a lipolytic bacterium isolated from bensasi goatfish Upeneus bensasi

  • Kyung-Kil Kim
  • Young-Ok Kim
  • Sooyeon Park
  • So-Jung Kang
  • Bo-Hye Nam
  • Doo Nam Kim
  • Tae-Kwang Oh
  • Jung-Hoon Yoon
Articles

Abstract

A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).

Keywords

Shewanella upenei taxonomy new species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann, P. and L. Baumann. 1981. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes, pp. 1302–1331. In M.P. Starr, H. Stolp, H.G. Trüper, A. Balows, and H.G. Schlegel (eds.), The Prokaryotes. Springer-Verlag, Berlin, Germany.Google Scholar
  2. Bruns, A., M. Rohde, and L. Berthe-Corti. 2001. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int. J. Syst. Evol. Microbiol. 51, 1997–2006.PubMedCrossRefGoogle Scholar
  3. Chang, H.W., S.W. Roh, K.H. Kim, Y.D. Nam, C.O. Jeon, H.M. Oh, and J.W. Bae. 2008. Shewanella basaltis sp. nov., a marine bacterium isolated from black sand. Int. J. Syst. Evol. Microbiol. 58, 1907–1910.PubMedCrossRefGoogle Scholar
  4. Cohen-Bazire, G., W.R. Sistrom, and R.Y. Stanier. 1957. Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J. Cell Comp. Physiol. 49, 25–68.CrossRefGoogle Scholar
  5. Cowan, S.T. and K.J. Steel. 1965. Manual for the Identification of Medical Bacteria. Cambridge University Press, London, United Kingdom.Google Scholar
  6. Euzéby, J.P. 1997. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47, 590–592. (List of Prokaryotic names with Standing in Nomenclature. Last full update: December 10, 2010. URL: http://www.bacterio.net).PubMedCrossRefGoogle Scholar
  7. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.CrossRefGoogle Scholar
  8. Ivanova, E.P., N.M. Gorshkova, J.P. Bowman, A.M. Lysenko, N.V. Zhukova, A.F. Sergeev, V.V. Mikhailov, and D.V. Nicolau. 2004. Shewanella pacifica sp. nov., a polyunsaturated fatty acid-producing bacterium isolated from sea water. Int. J. Syst. Evol. Microbiol. 54, 1083–1087.PubMedCrossRefGoogle Scholar
  9. Kim, D., K.S. Baik, M.S. Kim, B.M. Jung, T.S. Shin, G.H. Chung, M.S. Rhee, and C.N. Seong. 2007. Shewanella haliotis sp. nov., isolated from the gut microflora of abalone, Haliotis discus hannai. Int. J. Syst. Evol. Microbiol. 57, 2926–2931.PubMedCrossRefGoogle Scholar
  10. Komagata, K. and K.I. Suzuki. 1987. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.CrossRefGoogle Scholar
  11. Lanyi, B. 1987. Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 19, 1–67.CrossRefGoogle Scholar
  12. Lee, O.O., S.C.K. Lau, M.M.Y. Tsoi, X. Li, I. Plakhotnikova, S. Dobretsov, M.C.S. Wu, P.K. Wong, M. Weinbauer, and P.Y. Qian. 2006. Shewanella irciniae sp. nov., a novel member of the family Shewanellaceae, isolated from the marine sponge Ircinia dendroides in the Bay of Villefranche, Mediterranean Sea. Int. J. Syst. Evol. Microbiol. 56, 2871–2877.PubMedCrossRefGoogle Scholar
  13. Leifson, E. 1963. Determination of carbohydrate metabolism of marine bacteria. J. Bacteriol. 85, 1183–1184.PubMedGoogle Scholar
  14. MacDonell, M.T. and R.R. Colwell. 1985. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol. 6, 171–182.Google Scholar
  15. Miyazaki, M., Y. Nogi, R. Usami, and K. Horikoshi. 2006. Shewanella surugensis sp. nov., Shewanella kaireitica sp. nov. and Shewanella abyssi sp. nov., isolated from deep-sea sediments of Suruga Bay, Japan. Int. J. Syst. Evol. Microbiol. 56, 1607–1613.PubMedCrossRefGoogle Scholar
  16. Nozue, H., T. Hayashi, Y. Hashimoto, T. Ezaki, K. Hamasaki, K. Ohwada, and Y. Terawaki. 1992. Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S. alga Simidu et al., 1990, 335. Int. J. Syst. Bacteriol. 42, 628–634.PubMedCrossRefGoogle Scholar
  17. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc., Newark, DE, USA.Google Scholar
  18. Satomi, M., B.F. Vogel, L. Gram, and K. Venkateswaran. 2006. Shewanella hafniensis sp. nov. and Shewanella morhuae sp. nov., isolated from marine fish of the Baltic Sea. Int. J. Syst. Evol. Microbiol. 56, 243–249.PubMedCrossRefGoogle Scholar
  19. Satomi, M., B.F. Vogel, K. Venkateswaran, and L. Gram. 2007. Description of Shewanella glacialipiscicola sp. nov. and Shewanella algidipiscicola sp. nov., isolated from marine fish of the Danish Baltic Sea, and proposal that Shewanella affinis is a later heterotypic synonym of Shewanella colwelliana. Int. J. Syst. Evol. Microbiol. 57, 347–352.PubMedCrossRefGoogle Scholar
  20. Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.CrossRefGoogle Scholar
  21. Staley, J.T. 1968. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J. Bacteriol. 95, 1921–1942.PubMedGoogle Scholar
  22. Tamaoka, J. and K. Komagata. 1984. Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25, 125–128.CrossRefGoogle Scholar
  23. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, and et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.Google Scholar
  24. Yamamoto, S. and S. Harayama. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61, 1104–1109.PubMedGoogle Scholar
  25. Yang, S.H., J.H. Lee, J-S. Ryu, C. Kato, and S.J. Kim. 2007. Shewanella donghaensis sp. nov., a psychrophilic, piezosensitive bacterium producing high levels of polyunsaturated fatty acid, isolated from deep-sea sediments. Int. J. Syst. Evol. Microbiol. 57, 208–212.PubMedCrossRefGoogle Scholar
  26. Yoon, J.H., K.H. Kang, T.K. Oh, and Y.H. Park. 2004a. Shewanella gaetbuli sp. nov., a slight halophile isolated from a tidal flat in Korea. Int. J. Syst. Evol. Microbiol. 54, 487–491.PubMedCrossRefGoogle Scholar
  27. Yoon, J.H., H. Kim, S.B. Kim, H.J. Kim, W.Y. Kim, S.T. Lee, M. Goodfellow, and Y.H. Park. 1996. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int. J. Syst. Bacteriol. 46, 502–505.CrossRefGoogle Scholar
  28. Yoon, J.H., I.G. Kim, D.Y. Shin, K.H. Kang, and Y.H. Park. 2003. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int. J. Syst. Evol. Microbiol. 53, 53–57.PubMedCrossRefGoogle Scholar
  29. Yoon, J.H., S.T. Lee, and Y.H. Park. 1998. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 48, 187–194.PubMedCrossRefGoogle Scholar
  30. Yoon, J.H., S.H. Yeo, I.G. Kim, and T.K. Oh. 2004b. Shewanella marisflavi sp. nov. and Shewanella aquimarina sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 54, 2347–2352.PubMedCrossRefGoogle Scholar
  31. Zhao, J.S., D. Manno, S. Thiboutot, G. Ampleman, and J. Hawari. 2007. Shewanella canadensis sp. nov. and Shewanella atlantica sp. nov., manganese dioxide- and hexahydro-1,3,5-trinitro-1,3,5-triazine-reducing, psychrophilic marine bacteria. Int. J. Syst. Evol. Microbiol. 57, 2155–2162.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kyung-Kil Kim
    • 1
  • Young-Ok Kim
    • 1
  • Sooyeon Park
    • 2
  • So-Jung Kang
    • 2
  • Bo-Hye Nam
    • 1
  • Doo Nam Kim
    • 3
  • Tae-Kwang Oh
    • 2
  • Jung-Hoon Yoon
    • 2
  1. 1.Biotechnology Research DivisionNational Fisheries Research and Development Institute (NFRDI)BusanRepublic of Korea
  2. 2.Korea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonRepublic of Korea
  3. 3.Fisheries Resources Research DivisionNational Fisheries Research and Development Institute (NFRDI)BusanRepublic of Korea

Personalised recommendations