The Journal of Microbiology

, Volume 48, Issue 3, pp 284–289 | Cite as

Assessment of soil fungal communities using pyrosequencing

  • Young Woon Lim
  • Byung Kwon Kim
  • Changmu Kim
  • Hack Sung Jung
  • Bong-Soo Kim
  • Jae-Hak Lee
  • Jongsik ChunEmail author


Pyrosequencing, a non-electrophoretic method of DNA sequencing, was used to investigate the extensive fungal community in soils of three islands in the Yellow Sea of Korea, between Korea and China. Pyrosequencing was carried out on amplicons derived from the 5′ region of 18S rDNA. A total of 10,166 reads were obtained, with an average length of 103 bp. The maximum number of fungal phylotypes in soil predicted at 99% similarity was 3,334. The maximum numbers of phylotypes predicted at 97% and 95% similarities were 736 and 286, respectively. Through phylogenetic assignment using BLASTN, a total of 372 tentative taxa were identified. The majority of true fungal sequences recovered in this study belonged to the Ascomycota (182 tentative taxa in 2,708 reads) and Basidiomycota (172 tentative taxa in 6,837 reads). The predominant species of Ascomycota detected have been described as lichen-forming fungi, litter/wood decomposers, plant parasites, endophytes, and saprotrophs: Peltigera neopolydactyla (Lecanoromycetes), Paecilomyces sp. (Sordariomycetes), Phacopsis huuskonenii (Lecanoromycetes), and Raffaelea hennebertii (mitosporicAscomycota). The majority of sequences in the Basidiomycota matched ectomycorrhizal and wood rotting fungi, including species of the Agaricales and Aphyllophorales, respectively. A high number of sequences in the Thelephorales, Boletales, Stereales, Hymenochaetales, and Ceratobasidiomycetes were also detected. By applying high-throughput pyrosequencing, we observed a high diversity of soil fungi and found evidence that pyrosequencing is a reliable technique for investigating fungal communities in soils.


fungal diversity soil fungi pyrosequencing 18S rDNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acosta-Martínez, V., S. Dowd, Y. Sun, and Y. Allen. 2008. Tagencoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol. Biochem. 40, 2762–2770.CrossRefGoogle Scholar
  2. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  3. Anderson, I.C., C.D. Campbell, and J.I. Prosser. 2003. Diversity of fungi in organic soils under a moorland—Scots pine (Pinus sylvestris L.) gradient. Environ. Microbiol. 5, 1121–1132.CrossRefPubMedGoogle Scholar
  4. Andréasson, H., M. Nilsson, B. Budowle, S. Frisk, and M. Allen. 2006. Quantification of mtDNA mixtures in forensic evidence material using pyrosequencing. Int. J. Legal Medicine 120, 383–390.CrossRefGoogle Scholar
  5. Atkins, S.D. and I.M. Clark. 2004. Fungal molecular diagnostics: a mini review. J. Appl. Genet. 45, 3–15.PubMedGoogle Scholar
  6. Booth, T. 1971. Distribution of certain soil inhabiting chytrid and chytridiaceous species related to some physical and chemical factors. Can. J. Botany 49, 1743–1755.CrossRefGoogle Scholar
  7. Brodie, E., S. Edwards, and N. Clipson. 2003. Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiol. Ecol. 45, 105–114.CrossRefPubMedGoogle Scholar
  8. Brussaard, L., P.C.d. Ruiter, and G.G. Brown. 2007. Soil biodiversity for agricultural sustainability. Agricul. Ecosyst. Environ. 121, 233–244.CrossRefGoogle Scholar
  9. Burpee, L.L., L.M. Kaye, L.G. Goulty, and M.B. Lawto. 1987. Suppression of gray snow mold on creeping bentgrass by an isolate of Typhula phacorrhiza. Plant Disease 71, 91–100.CrossRefGoogle Scholar
  10. Daniels, B.A. 1981. The influence of hyperparasites of vesicular-arbuscular mycorrhizal fungi on growth of citrus. Phytopathology 71, 212–213.Google Scholar
  11. De Bellis, T., G. Kernaghan, and P. Widden. 2007. Plant community influences on soil microfungal assemblages in boreal mixed-wood forests. Mycologia 99, 356–367.CrossRefPubMedGoogle Scholar
  12. Edel-Hermann, V., C. Dreumont, A. Perez-Piqueres, and C. Steinberg. 2004. Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiol. Ecol. 47, 397–404.CrossRefPubMedGoogle Scholar
  13. Edwards, R.A., B. Rodriguez-Brito, L. Wegley, M. Haynes, M. Breitbart, D.M. Peterson, M.O. Saar, S. Alexander, E.C. Alexander, Jr., and F. Rohwer. 2006. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7, 57.CrossRefPubMedGoogle Scholar
  14. Edwards, R.A. and F. Rohwer. 2005. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510.CrossRefPubMedGoogle Scholar
  15. Ewing, B. and P. Green. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.PubMedGoogle Scholar
  16. Ewing, B., L. Hillier, M.C. Wendl, and P. Green. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.PubMedGoogle Scholar
  17. Fryar, S.C. 2002. Fungal succession or sequence of fruit bodies? Fungal Divers. 10, 5–10.Google Scholar
  18. Gruber, J.D., P.B. Colligan, and J.K. Wolford. 2002. Estimation of single nucleotide polymorphism allele frequency in DNA pools by using Pyrosequencing. Hum. Genet. 110, 395–401.CrossRefPubMedGoogle Scholar
  19. Hibbett, D.S., M. Binder, J.F. Bischoff, M. Blackwell, P.F. Cannon, O.E. Eriksson, S. Huhndorf, and et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111, 509–547.CrossRefPubMedGoogle Scholar
  20. Huber, J.A., D.B. Welch, H.G. Morrison, S.M. Huse, P.R. Neal, D.A. Butterfield, and M.L. Sogin. 2007. Microbial population structures in the deep marine biosphere. Science 318, 97–100.CrossRefPubMedGoogle Scholar
  21. Isola, D., M. Pardini, F. Varaine, S. Niemann, S. Rusch-Gerdes, L. Fattorini, G. Orefici, and et al. 2005. A pyrosequencing assay for rapid recognition of SNPs in Mycobacterium tuberculosis embB306 region. J. Microbiol. Methods 62, 113–120.CrossRefPubMedGoogle Scholar
  22. Jeewon, R. and K.D. Hyde. 2007. Detection and diversity of fungi from environmental samples: Traditional versus molecular approaches. Advanced techniques in soil microbiology, Springer Berlin Heidelberg, Berlin, Germany.Google Scholar
  23. Jonasson, J., M. Olofsson, and H.J. Monstein. 2002. Classification, identification and subtyping of bacteria based on pyrosequencing and signature matching of 16S rDNA fragments. APMIS. 110, 263–272.CrossRefPubMedGoogle Scholar
  24. Katoh, K. and H. Toh. 2008. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 9, 286–298.CrossRefPubMedGoogle Scholar
  25. Kim, B.S., B.K. Kim, J.H. Lee, M. Kim, Y.W. Lim, and J. Chun. 2008. Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing. J. Microbiol. 46, 357–363.CrossRefPubMedGoogle Scholar
  26. Kowalchuk, G.A., S. Gerards, and J.W. Woldendorp. 1997. Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. Appl. Environ. Microbiol. 63, 3858–3865.PubMedGoogle Scholar
  27. Li, H., S.E. Smith, R.E. Holloway, Y. Zhu, and F.A. Smith. 2006. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol. 172, 536–543.CrossRefPubMedGoogle Scholar
  28. Lindahl, B.D., K. Ihrmark, J. Boberg, S.E. Trumbore, P. Hogberg, J. Stenlid, and R.D. Finlay. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 173, 611–620.CrossRefPubMedGoogle Scholar
  29. Lozupone, C.A. and D.A. Klein. 1999. Chytridiomycota of little importance in soil?, vol. 65, pp. 662–663, ASM News, USA.Google Scholar
  30. Lozupone, C.A. and D.A. Klein. 2002. Molecular and cultural assessment of chytrid and Spizellomyces populations in grassland soils. Mycologia 94, 411–420.CrossRefGoogle Scholar
  31. Margulies, M., M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka, and et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.PubMedGoogle Scholar
  32. Marshall, M.N., L. Cocolin, D.A. Mills, and J.S. VanderGheynst. 2003. Evaluation of PCR primers for denaturing gradient gel electrophoresis analysis of fungal communities in compost. J. Appl. Microbiol. 95, 934–948.CrossRefPubMedGoogle Scholar
  33. Miller, S.L. 1995. Functional diversity of fungi. Can. J. Botany 73, S50–S57.CrossRefGoogle Scholar
  34. Myers, E.W. and W. Miller. 1988. Optimal alignments in linear space. Comput. Appl. Biosci. 4, 11–17.PubMedGoogle Scholar
  35. O’Brien, H.E., J.L. Parrent, J.A. Jackson, J.M. Moncalvo, and R. Vilgalys. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 71, 5544–5550.CrossRefPubMedGoogle Scholar
  36. Ogino, S., T. Kawasaki, M. Brahmandam, L. Yan, M. Cantor, C. Namgyal, M. Mino-Kenudson, G.Y. Lauwers, M. Loda, and C.S. Fuchs. 2005. Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. J. Mol. Diagn. 7, 413–421.PubMedGoogle Scholar
  37. Öpik, M., M. Moora, J. Liira, U. Köljalg, M. Zobel, and R. Sen. 2003. Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol. 160, 581–593.CrossRefGoogle Scholar
  38. Retief, J.D. 2000. Phylogenetic analysis using PHYLIP. Methods Mol. Biol. 132, 243–258.PubMedGoogle Scholar
  39. Roesch, L.F., R.R. Fulthorpe, A. Riva, G. Casella, A.K. Hadwin, A.D. Kent, S.H. Daroub, F.A. Camargo, W.G. Farmerie, and E.W. Triplett. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290.PubMedGoogle Scholar
  40. Ronaghi, M. 2001. Pyrosequencing sheds light on DNA sequencing. Genome Res. 11, 3–11.CrossRefPubMedGoogle Scholar
  41. Ronaghi, M. and E. Elahi. 2002. Pyrosequencing for microbial typing. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 782, 67–72.CrossRefPubMedGoogle Scholar
  42. Ronaghi, M., M. Uhlen, and P. Nyren. 1998. A sequencing method based on real-time pyrophosphate. Science 281, 363–365.CrossRefPubMedGoogle Scholar
  43. Ross, J.P. and R. Ruttencutter. 1977. Population dynamics of two versicular-arbuscular endomycorrhizal fungi and the role of hyperparasitic fungi. Phytopathology 67, 490–496.CrossRefGoogle Scholar
  44. Schloss, P.D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71, 1501–1506.CrossRefPubMedGoogle Scholar
  45. Schmidt, S.K., K.L. Wilson, A.F. Meyer, M.M. Gebauer, and A.J. King. 2008. Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb. Ecol. 56, 681–687.CrossRefPubMedGoogle Scholar
  46. Smit, E., P. Leeflang, B. Glandorf, J.D. van Elsas, and K. Wernars. 1999. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 65, 2614–2621.PubMedGoogle Scholar
  47. Sogin, M.L., H.G. Morrison, J.A. Huber, D. Mark Welch, S.M. Huse, P.R. Neal, J.M. Arrieta, and G.J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 103, 12115–12120.CrossRefPubMedGoogle Scholar
  48. Tisdall, J.M. 1991. Fungal hyphae and structural stability of soil. Aust. J. Soil Res. 29, 729–743.CrossRefGoogle Scholar
  49. van Elsas, J.D., G.F. Duarte, A. Keijzer-Wolters, and E. Smit. 2000. Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J. Microbiol. Methods 43, 133–151.CrossRefPubMedGoogle Scholar
  50. Waldrop, M.P., D.R. Zak, C.B. Blackwood, C.D. Curtis, and D. Tilman. 2006. Resource availability controls fungal diversity across a plant diversity gradient. Ecol. Lett. 9, 1127–1135.CrossRefPubMedGoogle Scholar
  51. White, H., V.J. Durston, A. Seller, C. Fratter, J.F. Harvey, and N.C.P. Cross. 2004. Detection and estimation of heteroplasmy for mitochondrial mutations using NanoChip and Pyrosequencing technology. J. Medi. Genetics 41, S71.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Young Woon Lim
    • 1
  • Byung Kwon Kim
    • 2
  • Changmu Kim
    • 1
  • Hack Sung Jung
    • 3
  • Bong-Soo Kim
    • 4
  • Jae-Hak Lee
    • 5
  • Jongsik Chun
    • 3
    • 5
    Email author
  1. 1.National Institute of Biological ResourceIncheonRepublic of Korea
  2. 2.Korea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonRepublic of Korea
  3. 3.School of Biological Sciences and Institute of MicrobiologySeoul National UniversitySeoulRepublic of Korea
  4. 4.Division of MicrobiologyNational Center for Toxicological Research/U.S.FDAJeffersonUSA
  5. 5.Interdisciplinary Program in BioinformaticsSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations