Advertisement

The Journal of Microbiology

, Volume 48, Issue 5, pp 616–622 | Cite as

New taxa in Alphaproteobacteria: Brevundimonas olei sp. nov., an esterase-producing bacterium

  • Myungjin Lee
  • Sathiyaraj Srinivasan
  • Myung Kyum KimEmail author
Article

Abstract

A polyphasic taxonomic approach was used to characterize a Gram-negative, non-motile bacterium, designated MJ15T, that was isolated from soil of a GS-Caltex Oil reservoir in Korea. As shown by comparative 16S rRNA gene sequence analysis, strain MJ15T belongs to genus Brevundimonas. The 16S rRNA gene sequence similarities ranged from 95.6–99.2% between strain MJ15T and validated representatives of the genus Brevundimonas. With respect to Brevundimonas species, strain MJ15T exhibited DNA-DNA relatedness values below 40.7%. The G+C content of the genomic DNA was 61.7 mol%. Strain MJ15T contained ubiquinone Q-10. The major fatty acids were C16:0 (27.7%), C19:0 cyclo ω8c (23.2%), summed feature 8 (containing C18:1 ω7c/C18:1 6c) (28.5%), and major hydroxyl fatty acid was C12:0 3OH (3.7%). Based upon its phenotypic and genotypic properties, as well as its phylogenetic distinctiveness, strain MJ15T (KCTC 22461T; JCM 16237T) should be classified in the genus Brevundimonas as the type strain of a novel species. The name Brevundimonas olei sp. nov. is proposed for this new species.

Keywords

taxonomy 16S rRNA gene Alphaproteobacteria Brevundimonas olei 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, W.R., A.B. Estrela, D.I. Nikitin, J. Smit, and M. Vancanneyt. 2009. Proposal of Brevundimonas halotolerans sp. nov., Brevundimonas poindexterae sp. nov. and Brevundimonas staleyi sp. nov., prosthecate bacteria from aquatic habitats. Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijs.0.016832-0.Google Scholar
  2. Abraham, W.R., C. Strömpl, H. Meyer, S. Lindholst, E.R.B. Moore, R. Christ, M. Vancanneyt, B.J. Tindali, A. Bennasar, J. Smit, and M. Tesar. 1999. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int. J. Syst. Bacteriol. 49, 1053–1073.PubMedCrossRefGoogle Scholar
  3. Brinkman, F.S., I. Wan, R.E. Hancock, A.M. Rose, and S.J. Jones. 2001. PhyloBLAST: facilitating phylogenetic analysis of BLAST results. Bioinformatics 17, 385–387.PubMedCrossRefGoogle Scholar
  4. Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.PubMedGoogle Scholar
  5. Cappuccino, J.G. and N. Sherman. 2002. Microbiology: a Laboratory Manual, 6th edn. Benjamin Cummings, San Francisco, USA.Google Scholar
  6. Choi, J.H., H.Y. Jung, H.S. Kim, and H.G. Cho. 2000. PhyloDraw: a phylogenetic tree drawing system. Bioinformatics 16, 1056–1058.PubMedCrossRefGoogle Scholar
  7. Choi, J. H., M.S. Kim, S.W. Roh, and J.W. Bae. 2010. Brevundimonas basaltis sp. nov., isolated from black sand. Int. J. Syst. Evol. Microbiol. 60, 1488–1492.PubMedCrossRefGoogle Scholar
  8. Collins, M.D. and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45, 316–354.PubMedGoogle Scholar
  9. Estrela, A.B. and W.R. Abraham. 2009. Proposal of Brevundimonas vancanneytii sp. nov. isolated from blood of a patient with endocarditis. Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijs.0.015651-0.Google Scholar
  10. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric DNADNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39, 224–229.Google Scholar
  11. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  12. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  13. Fritz, I., C. Strömpl, D.I. Nikitin, A. Lysenko, and W.R. Abraham. 2005. Brevundimonas mediterranea sp. nov., a non-stalked species from the Mediterranean Sea. Int. J. Syst. Evol. Microbiol. 55, 479–486.PubMedCrossRefGoogle Scholar
  14. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid. Symp. Ser. 41, 95–98.Google Scholar
  15. Kang, S.J., N.S. Choi, J.H. Choi, J.S. Lee, J.H. Yoon, and J.J. Song. 2009. Brevundimonas naejangsanensis sp. nov., a proteolytic bacterium isolated from soil, and reclassification of Mycoplana bullata into the genus Brevundimonas as Brevundimonas bullata comb. nov. Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijs.0.011700-0.Google Scholar
  16. Kim, M.K., W.T. Im, H. Ohta, M. Lee, and S.T. Lee. 2005. Sphingopyxis granuli sp. nov., a β-glucosidase producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J. Microbiol. 43, 152–157.PubMedGoogle Scholar
  17. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  18. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Brief. Bioinform. 5, 150–163.PubMedCrossRefGoogle Scholar
  19. Li, Y., Y. Kawamura, N. Fujiwara, T. Naka, H. Liu, X. Huang, K. Kobayashi, and T. Ezaki. 2004. Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int. J. Syst. Evol. Microbiol. 54, 819–825.PubMedCrossRefGoogle Scholar
  20. Mesbah, M., U. Premachandran, and W.B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.CrossRefGoogle Scholar
  21. Ryu, S.H., M. Park, J.R. Lee, P.Y. Yun, and C.O. Jeon. 2007. Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 57, 1561–1565.PubMedCrossRefGoogle Scholar
  22. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  23. Sasser, M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.Google Scholar
  24. Segers, P., M. Vancanneyt, B. Pot, U. Torck, B. Hoste, D. Dewettinck, E. Falsen, K. Kersters, and P. Devos. 1994. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int. J. Syst. Bacteriol. 44, 499–510.PubMedCrossRefGoogle Scholar
  25. Shin, Y.K., J.S. Lee, C.O. Chun, H.J. Kim, and Y.H. Park. 1996. Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J. Microbiol. Biotechnol. 6, 68–69.Google Scholar
  26. Tamaoka, J. and K. Komagata. 1984. Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25, 125–128.CrossRefGoogle Scholar
  27. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.CrossRefGoogle Scholar
  28. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, and et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar
  29. Yoon, J.H., S.J. Kang, J.S. Lee, and T.K. Oh. 2006b. Brevundimonas terrae sp. nov., isolated from an alkaline soil in Korea. Int. J. Syst. Evol. Microbiol. 56, 2915–2919.PubMedCrossRefGoogle Scholar
  30. Yoon, J.H., S.J. Kang, J.S. Lee, H.W. Oh, and T.K. Oh. 2007. Brevundimonas lenta sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 57, 2236–2240.PubMedCrossRefGoogle Scholar
  31. Yoon, J.H., S.J. Kang, H.W. Oh, J.S. Lee, and T.K. Oh. 2006a. Brevundimonas kwangchunensis sp. nov., isolated from an alkaline soil in Korea. Int. J. Syst. Evol. Microbiol. 56, 613–617.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Myungjin Lee
    • 1
  • Sathiyaraj Srinivasan
    • 2
  • Myung Kyum Kim
    • 2
    Email author
  1. 1.Research and Development DivisionH-Plus Eco Ltd.DaejeonRepublic of Korea
  2. 2.Department of Bio & Environmental Technology, Division of Environmental & Life Science, College of Natural ScienceSeoul Women’s UniversitySeoulRepublic of Korea

Personalised recommendations