The Journal of Microbiology

, Volume 48, Issue 6, pp 808–813 | Cite as

Identification and functional analysis of a gene encoding β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris

Article

Abstract

The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and β-glucosidases. A novel β-glucosidase designated as Cel3A was identified from F. palustris grown at the expense of Avicel. The deduced amino acid sequence of Cel3A showed high homology with those of other fungal β-glucosidases that belong to glycosyl hydrolase (GH) family 3. The sequence analysis also indicated that Cel3A contains the N- and C-terminal domains of GH family 3 and Asp-209 was conserved as a catalytic nucleophile. The cloned gene was successfully expressed in the yeast Pichia pastoris and the recombinant protein exhibited β-glucosidase activity with cellobiose and some degree of thermostability. Considering the size and sequence of the protein, the β-glucosidase identified in this study is different from the protein purified directly from F. palustris in the previous study. Our results suggest that the fungus possesses at least two β-glucosidase genes.

Keywords

β-glucosidase F. palustris brown-rot fungus glycosyl hydrolase P. pastoris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cantarel, B.L., P.M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37 (Database issue), D233–D238.CrossRefPubMedGoogle Scholar
  2. Clamp, M., J. Cuff, S.M. Searle, and G.J. Barton. 2004. The Jalview Java alignment editor. Bioinformatics 20, 426–427.CrossRefPubMedGoogle Scholar
  3. Cohen, R., M.R. Suzuki, and K.E. Hammel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 71, 2412–2417.CrossRefPubMedGoogle Scholar
  4. Dashtban, M., H. Schraft, and Q. Wensheng. 2009. Fungal bioconversion of lignocellulosic residues; Opportunities & perspectives. Int. J. Biol. Sci. 5, 578–595.PubMedGoogle Scholar
  5. Henrissat, B. and G. Davies. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644.CrossRefPubMedGoogle Scholar
  6. Ito, S. 1997. Alkaline cellulases from alkaliphilic Bacillus: Enzymatic properties, genetics, and application to detergents. Extremophiles 1, 61–66.CrossRefPubMedGoogle Scholar
  7. Joo, A.R., M. Jeya, K.M. Lee, W.I. Shim, J.S. Kim, I.W. Kim, Y.S. Kim, D.K. Oh, P. Gunasekaran, and J.K. Lee. 2009. Purification and characterization of a β-1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Appl. Microbiol. Biotechnol. 83, 285–294.CrossRefPubMedGoogle Scholar
  8. Kerem, Z., K.A. Jensen, and K.E. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gleophyllum trabeum: Evidence for an extracellular hydroquinone driven Fenton reaction. FEBS Lett. 446, 49–54.CrossRefPubMedGoogle Scholar
  9. Lynd, L.R., P.J. Weimer, W.H. van Zyl, and I.S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577.CrossRefPubMedGoogle Scholar
  10. Mach, R.L. and S. Zeilinger. 2003. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol. 60, 515–522.PubMedGoogle Scholar
  11. Martinez, D., L.F. Larrondo, N. Putnam, M.D. Gelpke, K. Huang, J. Chapman, K.G. Helfenbein, and et al. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnol. 22, 695–700.CrossRefGoogle Scholar
  12. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153, 375–380.Google Scholar
  13. Ouyang, J., M. Yan, D. Kong, and L. Xu. 2006. A complete protein pattern of cellulase and hemicellulase genes in the filamentous fungus Trichoderma reesei. Biotechnol. J. 1, 1266–1274.CrossRefPubMedGoogle Scholar
  14. Pozzo, T., J.L. Pasten, E.N. Karlsson, and D.T. Logan. 2010. Structural and functional analyses of β-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain represent-tative of glycoside hydrolase 3. J. Mol. Biol. 397, 724–739.CrossRefPubMedGoogle Scholar
  15. Rabinovich, M.L., M.S. Melnick, and A.V. Bolobova. 2002. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow). 67, 1026–1050.CrossRefGoogle Scholar
  16. Riou, C., J.M. Salmon, M.J. Vallier, Z. Gunata, and P. Barre. 1998. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 64, 3607–3614.PubMedGoogle Scholar
  17. Somogyi, M. 1952. Note on sugar determination. J. Biol. Chem. 195, 19–23.Google Scholar
  18. Song, B.C., K.Y. Kim, J.J. Yoon, S.H. Shim, K. Lee, Y.S. Kim, Y.K. Kim, and C.J. Cha. 2008. Functional analysis of a gene encoding endoglucanase that belongs to glycosyl hydrolase family 12 from the brown-rot basidiomycete Fomitopsis palustris. J. Microbiol. Biotechnol. 18, 404–409.PubMedGoogle Scholar
  19. Steenbakkers, P.J.M., H.R. Harhangi, M.W. Bosscher, M.M.C. van der Hooft, J.T. Keltjens, C. van der Drift, G.D. Vogels, and H.J.M. Op Den Camp. 2003. β-Glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. Biochem. J. 370, 963–970.CrossRefPubMedGoogle Scholar
  20. Varghese, J.N., M. Hrmova, and G.B. Fincher. 1999. Threedimensional structure of a barley β-d-glucanexohydrolase, a family 3 glycosyl hydrolase. Structure 7, 179–190.CrossRefPubMedGoogle Scholar
  21. Vuong, T.V. and D.B. Wilson. 2010. Glycoside hydrolases: catalytic base/nucleophile diversity. Biotechnol. Bioeng. 107, 195–205.CrossRefPubMedGoogle Scholar
  22. Wymelenberg, A.V., G. Sabat, D. Martinez, A.S. Rajangam, T.T. Teeri, J. Gaskell, P.J. Kersten, and D. Cullen. 2005. The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J. Biotechnol. 118, 17–34.CrossRefPubMedGoogle Scholar
  23. Yoon, J.J., C.J. Cha, Y.S. Kim, and W. Kim. 2008a. Degradation of cellulose by the major endoglucanase produced from the brownrot fungus Fomitopsis pinicola. Biotechnol. Lett. 30, 1373–1378.CrossRefPubMedGoogle Scholar
  24. Yoon, J.J., C.J. Cha, Y.S. Kim, D.W. Son, and Y.K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endoglucanases capable of degrading microcrystalline cellulose. J. Microbiol. Biotechnol. 17, 800–805.PubMedGoogle Scholar
  25. Yoon, J.J., K. Igarashi, T. Kajisa, and M. Samejima. 2006. Purification, identification and molecular cloning of glycoside hydrolase family 15 glucoamylase from the brown-rot basidiomycete Fomitopsis palustris. FEMS. Microbiol. Lett. 259, 288–294.CrossRefPubMedGoogle Scholar
  26. Yoon, J.J. and Y.K. Kim. 2005. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J. Microbiol. 43, 487–492.PubMedGoogle Scholar
  27. Yoon, J.J., K.Y. Kim, and C.J. Cha. 2008b. Purification and characterization of thermostable-β-glucosidase from the brownrot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J. Microbiol. 46, 51–55.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Microbial Biotechnology Lab, Department of Biotechnology (BK21-program)Chung-Ang UniversityAnseongRepublic of Korea

Personalised recommendations