The Journal of Microbiology

, Volume 48, Issue 6, pp 798–802

Rescue of a cold-sensitive mutant at low temperatures by cold shock proteins from Polaribacter irgensii KOPRI 22228

  • Ji-hyun Uh
  • Youn Hong Jung
  • Yoo Kyung Lee
  • Hong Kum Lee
  • Hana Im


Exposure to low temperatures induces the biosynthesis of specific sets of proteins, including cold shock proteins (Csps). Since many of the specific functions of pychrophilic Csps are unknown, the roles of Csps from an Arctic bacterium, Polaribacter irgensii KOPRI 22228, were examined. The genes encoding CspA and CspC of P. irgensii were cloned in this study. Sequence analysis showed that these proteins have cold shock domains containing two RNA-binding motifs, RNP1 and RNP2. Both proteins bound oligo(dT)-cellulose resins, suggesting single-stranded nucleic acid-binding activity. When the P. irgensii Csps were overexpressed in Escherichia coli, the cold-resistance of the host was increased by more than five-fold. The P. irgensii Csps also rescued a cold-sensitive E. coli csp-quadruple deletion strain, BX04, at low temperatures. These results suggest that Csps from P. irgensii play a role in survival in polar environments.


cold-shock protein (Csp) psychrophile Arctic bacteria cold-resistance P. irgensii 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brinkmeyer, R., K. Knittel, J. Jurgens, H. Weyland, R. Amann, and E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69, 6610–6619.CrossRefPubMedGoogle Scholar
  2. D’Amico, S., T. Collins, J.C. Marx, G. Feller, and C. Gerday. 2006. Psychrophilic microorganisms: challenges for life. EMBO Reports 7, 385–389.CrossRefPubMedGoogle Scholar
  3. Ermolenko, D.N. and G.I. Makhatadze. 2002. Bacterial cold-shock proteins. Cell. Mol. Life Sci. 59, 1902–1913.CrossRefPubMedGoogle Scholar
  4. Feng, W., R. Tejero, D.E. Zimmerman, M. Inouye, and G.T. Montelione. 1998. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: Evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry 37, 10881–10896.CrossRefPubMedGoogle Scholar
  5. Giaquinto, L., P.M.G. Curmi, K.S. Siddiqui, A. Poljak, E. DeLong, S. DasSarma, and R. Cavicchioli. 2007. Structure and function of cold shock proteins in Archaea. J. Bacteriol. 189, 5738–5748.CrossRefPubMedGoogle Scholar
  6. Goldstein, J., N.S. Pollitt, and M. Inouye. 1990. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 283–287.CrossRefPubMedGoogle Scholar
  7. Gumley, A.W. and W.E. Inniss. 1996. Cold shock proteins and cold acclimation proteins in the psychrotrophic bacterium Pseudomonas putida Q5 and its transconjugant. Can. J. Microbiol. 42, 798–803.CrossRefPubMedGoogle Scholar
  8. Hillier, B.J., H.M. Rodriguez, and L.M. Gregoret. 1998. Coupling protein stability and protein function in Escherichia coli CspA. Fold. Des. 3, 87–93.CrossRefPubMedGoogle Scholar
  9. Jiang, W., Y. Hou, and M. Inouye. 1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272, 196–202.CrossRefPubMedGoogle Scholar
  10. Jones, P.G. and M. Inouye. 1994. The cold-shock response-a hot topic. Mol. Microbiol. 11, 811–818.CrossRefPubMedGoogle Scholar
  11. Jones, P.G., R. Krah, S.R. Tafuri, and A.P. Wolffe. 1992. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J. Bacteriol. 174, 5798–5802.PubMedGoogle Scholar
  12. Jones, P.G., R.A. VanBogelen, and F.C. Neidhardt. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169, 2092–2095.PubMedGoogle Scholar
  13. Jung, C.H. and H. Im. 2003. A recombinant human α1-antitrypsin variant, M-malton, undergoes a spontaneous conformational conversion into a latent form. J. Microbiol. 41, 335–339.Google Scholar
  14. Jung, Y.H., J.Y. Yi, H. Jung, Y.K. Lee, H.K. Lee, M. Chinnamaranaicker, J.H. Uh, I.S. Jo, E.J. Jung, and H. Im. 2010. Overexpression of cold shock protein A of Psychromonas arctica KOPRI 22215 confers cold-resistance. Protein J. 29, 136–142.CrossRefPubMedGoogle Scholar
  15. Kim, M.J., Y.K. Lee, H.K. Lee, and H. Im. 2007. Characterization of cold-shock protein A of antarctic Streptomyces sp. AA8321. Protein J. 26, 51–59.Google Scholar
  16. Michel, V., I. Lehoux, G. Depret, P. Anglade, J. Labadie, and M. Hebraud. 1997. The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J. Bacteriol. 179, 7331–7342.PubMedGoogle Scholar
  17. Newkirk, K., W. Feng, W. Jiang, R. Tejero, S.D. Emerson, M. Inouye, and G.T. Montelione. 1994. Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc. Natl. Acad. Sci. USA 91, 5114–5118.CrossRefPubMedGoogle Scholar
  18. Phadtare, S. 2004. Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 6, 125–136.PubMedGoogle Scholar
  19. Phadtare, S., J. Hwang, K. Severinov, and M. Inouye. 2003. CspB and CspL, thermostable cold-shock proteins from Thermotoga maritima. Genes Cells 8, 801–810.CrossRefPubMedGoogle Scholar
  20. Schindelin, H., M.A. Marahiel, and U. Heinemann. 1993. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364, 154–168.CrossRefGoogle Scholar
  21. Schindler, T., P.L. Graumann, D. Perl, S. Ma, F.X. Schmid, and M.A. Marahiel. 1999. The family of cold shock proteins of Bacillus subtilis. Stability and dynamics in vitro and in vivo. J. Biol. Chem. 274, 3407–3413.Google Scholar
  22. Schröder, K., P. Graumann, A. Schnuchel, T.A. Holak, and M.A. Marahiel. 1995. Mutational analysis of the putative nucleic acidbinding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of singlestranded DNA containing the Y-box motif. Mol. Microbiol. 16, 699–708.CrossRefPubMedGoogle Scholar
  23. Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.CrossRefPubMedGoogle Scholar
  24. Willimsky, G., H. Bang, G. Fischer, and M.A. Marahiel. 1992. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J. Bacteriol. 174, 6326–6335.PubMedGoogle Scholar
  25. Wouters, J.A., H. Frenkiel, W.M. deVos, O.P. Kuipers, and T. Abee. 2001. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins. Appl. Environ. Microbiol. 67, 5171–5178.CrossRefPubMedGoogle Scholar
  26. Xia, B., H. Ke, and M. Inouye. 2001. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol. Microbiol. 40, 179–188.CrossRefPubMedGoogle Scholar
  27. Yamanaka, K., W. Zheng, E. Crooke, Y.H. Wang, and M. Inouye. 2001. CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol. Microbiol. 39, 1572–1584.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ji-hyun Uh
    • 1
  • Youn Hong Jung
    • 1
  • Yoo Kyung Lee
    • 2
  • Hong Kum Lee
    • 2
  • Hana Im
    • 1
  1. 1.Department of Molecular BiologySejong UniversitySeoulRepublic of Korea
  2. 2.Polar BioCenter, Korea Polar Research InstituteKORDIIncheonRepublic of Korea

Personalised recommendations