Advertisement

The Journal of Microbiology

, Volume 48, Issue 6, pp 754–759 | Cite as

Acinetobacter kyonggiensis sp. nov., a β-glucosidase-producing bacterium, isolated from sewage treatment plant

  • Hye-Jung Lee
  • Sang-Seob LeeEmail author
Article

Abstract

A Gram-negative, non-motile bacterium, designated KSL5401-037T, was isolated from a sewage treatment plant in Gwangju in the Republic of Korea and was characterized using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that strain KSL5401-037T belonged to the genus Acinetobacter in the family Moraxellaceae of the Gammaproteobacteria (Brisou and Prevot, 1954). According to a 16S rRNA gene sequence analysis, it was closely related to Acinetobacter johnsonii ATCC 17909T (97.3%), A. bouvetii 4B02T (97.2%), and A. beijerinckii 58aT (96.8%). Chemotaxonomic data revealed that strain KSL5401-037T possesses an ubiquinone system with Q-8 as the predominant compound and C16:0 (19.2%), C18:1 ω9c (19.5%), and summed feature 3 (C16:1 ω6c / C16:1 ω7c, 34.1%) as the predominant cellular fatty acids. The major polar lipids detected in strain KSL5401-037T were diphosphatidylglycerol (DPG) and, phosphatidylethanolamine (PE), followed by phosphatidylglycerol (PG) and moderate amounts of phosphatidylcholine and phosphatidylserine. The G+C content of the genomic DNA was 41.2–42.1 mol%. Strain KSL5401-037T exhibited relatively low levels of DNA-DNA relatedness with respect to A. johnsonii DSM 6963T (17.7%) and A. bouvetii 4B02T (9.3%). The DNA-DNA relatedness values, biochemical, and physiological characteristics of strain KSL5401-037T strongly support its genotypic and phenotypic differentiation from other recognized type strains of the genus Acinetobacter. Based on these data, strain KSL5401-037T (JCM 17071T =KEMC 5401-037T) should be classified in the genus Acinetobacter as a type strain of novel species, for which the name Acinetobacter kyonggiensis sp. nov. is proposed.

Keywords

Acinetobacter kyonggiensis taxonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2010_355_MOESM1_ESM.pdf (4.4 mb)
Supplementary material, approximately 4.41 MB.

References

  1. Bouvet, P.J.M. and P.A.D. Grimont. 1986. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int. J. Syst. Bacteriol. 36, 228–240.CrossRefGoogle Scholar
  2. Brisou, J. and A.R. Prevot. 1954. Genus II. Acinetobacter, pp. 425. In D.J. Brenner, N.R. Krieg, and J.T. Staley (eds.), Bergey’s manual of systematic bacteriology, 2nd ed. The Springer Co., New York, N.Y., USA.Google Scholar
  3. Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.PubMedGoogle Scholar
  4. Cappuccino, J.G. and N. Sherman. 2002. Microbiology: a Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings.Google Scholar
  5. Carr, E.L., P. Kämpfer, B.K.C. Patel, V. Gürtler, and R.J. Seviour. 2003. Seven novel species of Acinetobacter isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 53, 953–963.CrossRefPubMedGoogle Scholar
  6. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.CrossRefPubMedGoogle Scholar
  7. Collins, M.D. and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45, 316–354.PubMedGoogle Scholar
  8. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric DNADNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39, 224–229.Google Scholar
  9. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  10. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  11. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98.Google Scholar
  12. Kim, M.K., W.T. Im, H. Ohta, M. Lee, and S.T. Lee. 2005. Sphingopyxis granuli sp. nov., a β-glucosidase producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J. Microbiol. 43, 152–157.PubMedGoogle Scholar
  13. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Brief. Bioinform. 5, 150–163.CrossRefPubMedGoogle Scholar
  15. Mesbah, M., U. Premachandran, and W.B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.CrossRefGoogle Scholar
  16. Minnikin, D.E., A.G. O’Donnell, M. Goodfellow, G. Alderson, M. Athalye, A. Schaal, and J.H. Parlett. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  17. Nemec, A., L. Dijkshoorn, I. Cleenwerck, T. De Baere, D. Janssens, T.J. Van Der Reijden, P. Ježek, and M. Vaneechoutte. 2003. Acinetobacter parvus sp. nov., a small-colony-forming species isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 53, 1563–1567.CrossRefPubMedGoogle Scholar
  18. Nemec, A., M. Musílek, M. Maixnerová, T.D. Baere, J.K. Van Der Reijden, M. Vaneechoutte, and L. Dijkshoorn. 2009a. Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int. J. Syst. Bacteriol. 59, 118–124.Google Scholar
  19. Nemec, A., M. Musílek, O. Šedo, T.D. Baere, M. Maixnerová, J.K. Van Der Reijden, Z. Zdráhal, M. Vaneechoutte, and L. Dijkshoorn. 2009b. Acinetobacter berezinae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate, respectively, Acinetobacter genomic species 10 and Acinetobacter genomic species 11. Int. J. Syst. Evol. Microbiol. 60, 896–903.CrossRefPubMedGoogle Scholar
  20. Saitou, N. and M. Nei. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  21. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.Google Scholar
  22. Shin, Y.K., J.S. Lee, C.O. Chun, H.J. Kim, and Y.H. Park. 1996. Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J. Microbiol. Biotechnol. 6, 68–69.Google Scholar
  23. Tamaoka, J. and K. Komagata. 1984. Determination of DNA base composition by reversed phase high-performance liquid chromategraphy. FEMS Microbiol. Lett. 25, 125–128.CrossRefGoogle Scholar
  24. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.CrossRefGoogle Scholar
  25. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, and et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar
  26. Weisburg, W.G., S.M. Barns, D.A. Pelletier, and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.PubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of BioengineeringGraduate School of Kyonggi UniversitySuwonRepublic of Korea

Personalised recommendations