The Journal of Microbiology

, Volume 48, Issue 6, pp 872–876 | Cite as

Analysis of cytoplasmic membrane proteome of Streptococcus pneumoniae by shotgun proteomic approach

  • Chi-Won Choi
  • Sung-Ho Yun
  • Sang-Oh Kwon
  • Sun-Hee Leem
  • Jong-Soon Choi
  • Chi-Young Yun
  • Seung Il Kim
Note

Abstract

In this study, cytoplasmic membrane proteins of S. pneumoniae strain R6 (ATCC BBA-255) were effectively separated from cell wall or extracellular proteins by sodium carbonate precipitation (SCP) and ultracentrifugation. Forty seven proteins were analyzed as cytoplasmic membrane proteins from the 260 proteins identified by the shotgun proteomic method using SDS-PAGE/LC/MS-MS. ABC transporters for metabolites such as metals, oligopeptides, phosphate, sugar, and amino acids, and membrane proteins involved in phosphotransferse systems, were identified as the predominant and abundant, cytoplasmic membrane proteins that would be essential for nutrient uptake, antibiotic resistance and virulence mechanisms. Our result supports that gel-based shotgun proteomics combined with sodium carbonate precipitation and ultracentrifugation is an effective method for analysis of cytoplasmic membrane proteins of S. pneumoniae.

Keywords

Streptococcus pneumoniae membrane proteome 1-DE/LC/MS-MS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2010_220_MOESM1_ESM.pdf (96 kb)
Supplementary material, approximately 95.7 KB.

References

  1. Bergmann, S. and S. Hammerschmidt. 2006. Versatility of pneumo coccal surface proteins. Microbiology 152, 295–303.CrossRefPubMedGoogle Scholar
  2. Briles, D.E., S. Hollingshead, A. Brooks-Walter, G.S. Nabors, L. Ferguson, M. Schilling, S. Gravenstein, P. Braun, J. King, and A. Swift. 2000. The potential to use pspa and other pneumococcal proteins to elicit protection against pneumococcal infection. Vaccine 18, 1707–1711.CrossRefPubMedGoogle Scholar
  3. Encheva, V., S.E. Gharbia, R. Wait, S. Begum, and H.N. Shah. 2006. Comparison of extraction procedures for proteome analysis of Streptococcus pneumoniae and a basic reference map. Proteomics 6, 3306–3317.CrossRefPubMedGoogle Scholar
  4. Garault, P., D. Le Bars, C. Besset, and V. Monnet. 2002. Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus. J. Biol. Chem. 277, 32–39.CrossRefPubMedGoogle Scholar
  5. Garcia-Suarez Mdel, M., F. Vazquez, and F.J. Mendez. 2006. Streptococcus pneumoniae virulence factors and their clinical impact: An update. Enferm. Infect. Microbiol. Clin. 24, 512–517.CrossRefGoogle Scholar
  6. Gardan, R., C. Besset, A. Guillot, C. Gitton, and V. Monnet. 2009. The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain lmd-9. J. Bacteriol. 191, 4647–4655.CrossRefPubMedGoogle Scholar
  7. Hakenbeck, R., T. Grebe, D. Zahner, and J.B. Stock. 1999. Betalactam resistance in Streptococcus pneumoniae: Penicillin-binding proteins and non-penicillin-binding proteins. Mol. Microbiol. 33, 673–678.CrossRefPubMedGoogle Scholar
  8. Hoskins, J., W.E. Alborn, Jr., J. Arnold, L.C. Blaszczak, S. Burgett, B.S. DeHoff, S.T. Estrem, and et al. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183, 5709–5717.CrossRefPubMedGoogle Scholar
  9. Ishihama, Y., Y. Oda, T. Tabata, T. Sato, T. Nagasu, J. Rappsilber, and M. Mann. 2005. Exponentially modified protein abundance index (empai) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics 4, 1265–1272.CrossRefPubMedGoogle Scholar
  10. Kerr, A.R., P.V. Adrian, S. Estevao, R. de Groot, G. Alloing, J.P. Claverys, T.J. Mitchell, and P.W. Hermans. 2004. The ami-alia/alib permease of Streptococcus pneumoniae is involved in nasopharyngeal colonization but not in invasive disease. Infect. Immun. 72, 3902–3906.CrossRefPubMedGoogle Scholar
  11. Kim, Y.H., K. Cho, S.H. Yun, J.Y. Kim, K.H. Kwon, J.S. Yoo, and S.I. Kim. 2006. Analysis of aromatic catabolic pathways in pseudomonas putida kt 2440 using a combined proteomic approach: 2-de/ms and cleavable isotope-coded affinity tag analysis. Proteomics 6, 1301–1318.CrossRefPubMedGoogle Scholar
  12. Lanie, J.A., W.L. Ng, K.M. Kazmierczak, T.M. Andrzejewski, T.M. Davidsen, K.J. Wayne, H. Tettelin, J.I. Glass, and M.E. Winkler. 2007. Genome sequence of avery’s virulent serotype 2 strain d39 of streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J. Bacteriol. 189, 38–51.CrossRefPubMedGoogle Scholar
  13. Lee, K.J., S.M. Bae, M.R. Lee, S.M. Yeon, Y.H. Lee, and K.S. Kim. 2006. Proteomic analysis of growth phase-dependent proteins of Streptococcus pneumoniae. Proteomics 6, 1274–1282.CrossRefPubMedGoogle Scholar
  14. Molloy, M.P., B.R. Herbert, M.B. Slade, T. Rabilloud, A.S. Nouwens, K.L. Williams, and A.A. Gooley. 2000. Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem. 267, 2871–2881.CrossRefPubMedGoogle Scholar
  15. Morsczeck, C., T. Prokhorova, J. Sigh, M. Pfeiffer, M. Bille-Nielsen, J. Petersen, A. Boysen, T. Kofoed, N. Frimodt-Moller, P. Nyborg-Nielsen, and P. Schrotz-King. 2008. Streptococcus pneumoniae: Proteomics of surface proteins for vaccine development. Clin. Microbiol. Infect. 14, 74–81.CrossRefPubMedGoogle Scholar
  16. Nandakumar, R., M.P. Nandakumar, M.R. Marten, and J.M. Ross. 2005. Proteome analysis of membrane and cell wall associated proteins from Staphylococcus aureus. J. Proteome Res. 4, 250–257.CrossRefPubMedGoogle Scholar
  17. Putman, M., H.W. van Veen, and W.N. Konings. 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64, 672–693.CrossRefPubMedGoogle Scholar
  18. Richter, S., V.J. Anderson, G. Garufi, L. Lu, J.M. Budzik, A. Joachimiak, C. He, O. Schneewind, and D. Missiakas. 2009. Capsule anchoring in Bacillus anthracis occurs by a transpeptidation reaction that is inhibited by capsidin. Mol. Microbiol. 71, 404–420.CrossRefPubMedGoogle Scholar
  19. Rigden, D.J., M.Y. Galperin, and M.J. Jedrzejas. 2003. Analysis of structure and function of putative surface-exposed proteins encoded in the Streptococcus pneumoniae genome: A bioinformatics-based approach to vaccine and drug design. Crit. Rev. Biochem. Mol. Biol. 38, 143–168.CrossRefPubMedGoogle Scholar
  20. Rodriguez-Ortega, M.J., N. Norais, G. Bensi, S. Liberatori, S. Capo, M. Mora, M. Scarselli, and et al. 2006. Characterization and identification of vaccine candidate proteins through analysis of the group a streptococcus surface proteome. Nat. Biotechnol. 24, 191–197.CrossRefPubMedGoogle Scholar
  21. Soualhine, H., V. Brochu, F. Menard, B. Papadopoulou, K. Weiss, M.G. Bergeron, D. Legare, J. Drummelsmith, and M. Ouellette. 2005. A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for psts, a subunit of the phosphate abc transporter. Mol. Microbiol. 58, 1430–1440.CrossRefPubMedGoogle Scholar
  22. Tettelin, H., K.E. Nelson, I.T. Paulsen, J.A. Eisen, T.D. Read, S. Peterson, J. Heidelberg, and et al. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506.CrossRefPubMedGoogle Scholar
  23. Toumanen, E.I. 2004. The pneumococcus, pp. 3–14. ASM press.Google Scholar
  24. Yun, S.H., C.W. Choi, S.H. Park, J.C. Lee, S.H. Leem, J.S. Choi, S. Kim, and S.I. Kim. 2008. Proteomic analysis of outer membrane proteins from Acinetobacter baumannii du202 in tetracycline stress condition. J. Microbiol. 46, 720–727.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chi-Won Choi
    • 1
    • 2
  • Sung-Ho Yun
    • 1
  • Sang-Oh Kwon
    • 1
    • 3
  • Sun-Hee Leem
    • 4
  • Jong-Soon Choi
    • 1
    • 3
  • Chi-Young Yun
    • 2
  • Seung Il Kim
    • 1
  1. 1.Devision of Life ScienceKorea Basic Science InstituteDaejeonRepublic of Korea
  2. 2.Department of BiologyDaejeon UniversityDaejeonRepublic of Korea
  3. 3.Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
  4. 4.Department of Biology and Biomedical ScienceDong-A UniversityBusanRepublic of Korea

Personalised recommendations