The Journal of Microbiology

, Volume 48, Issue 5, pp 594–600 | Cite as

Effects of crude oil on marine microbial communities in short term outdoor microcosms

  • Seung Won Jung
  • Joon Sang Park
  • Oh Youn Kown
  • Jung-Hoon Kang
  • Won Joon Shim
  • Young-Ok Kim


To assess the effects of crude oil spills on marine microbial communities, 10 L outdoor microcosms were manipulated over an exposure period of 8 days. The responses of microbial organisms exposed to five crude oil concentrations in 10 to 10,000 ppm (v/v) were monitored in the microcosms. The abundance of microalgae and copepods decreased rapidly upon the addition of crude oil at concentrations over 1,000 ppm, whereas the total density of heterotrophic bacteria increased dramatically at the higher concentrations. Bacterial diversity, determined by denaturing gradient gel electrophoresis, was increased at higher concentrations. In particular, the intensity of the bands representing Jannaschia sp. and Sulfitobacter brevis increased with the addition of oil. These results indicate that crude oil spills with concentrations over 1,000 ppm seriously affected the structure of the microbial communities.


DGGE microbial communities microcosm oil spills pollution effects risk assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atlas, R.M. and R. Bartha. 1972. Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorus. Biotechnol. Bioeng. 14, 309–318.PubMedCrossRefGoogle Scholar
  2. Berman, M.S. and D.R. Heinle. 1980. Modification of the feeding behavior of marine copepods by sub-lethal concentrations of water-accommodated fuel oil. Mar. Biol. 56, 59–64.CrossRefGoogle Scholar
  3. Bobra, A.M., W.Y. Shiu, D. MacKay, and R.H. Goodman. 1989. Acute toxicity of dispersed fresh and weathered crude oil and dispersants to Daphnia magna. Chemosphere 19, 1199–1222.CrossRefGoogle Scholar
  4. Brunk, C.F., K.C. Jones, and T.W. James. 1979. Assay for nannogram quantities of DNA in cellular homogenates. Anal. Biochem. 92, 497–500.PubMedCrossRefGoogle Scholar
  5. Caquet, T., L. Lagadic, and S.R. Sheffield. 2000. Mesocosms in ecotoxicology (1): Outdoor aquatic systems. Rev. Environ. Contam. T. 165, 1–38.Google Scholar
  6. Cerniglia, C.E. 1981. Aromatic hydrocarbons: metabolism by bacteria, fungi, and algae. Rev. Biochem. Toxicol. 3, 321–361.Google Scholar
  7. Dahl, E., M. Laake, K. Tjessem, K. Eberlein, and B. Bøhle. 1983. Effects of Ekofisk crude oil on an enclosed planktonic ecosystem. Mar. Ecol. Prog. Ser. 14, 81–91.CrossRefGoogle Scholar
  8. Davenport, J. 1982. Oil and planktonic ecosystems. Philos. Trans. R. Soc. Lond. B. 297, 369–384.CrossRefGoogle Scholar
  9. Gerdes, B., R. Brinkmeyer, G. Dieckmann, and E. Helmke. 2005. Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiol. Ecol. 53, 129–139.PubMedCrossRefGoogle Scholar
  10. Gin, K.Y.H., M.D.K. Huda, W.K. Lim, and P. Tkalich. 2001. An oil spill-food interaction model for coastal waters. Mar. Pollut. Bull. 42, 590–597.PubMedCrossRefGoogle Scholar
  11. González, J., F.G. Figueiras, M. Aranguren-Gassis, B.G. Crespo, E. Fernández, X.A.G. Morán, and M. Nieto-Cid. 2009. Effect of a simulated oil spill on natural assemblages of marine phytoplankton enclosed in microcosms. Est. Coast. Shelf Sci. 83, 265–276.CrossRefGoogle Scholar
  12. Gordan, Jr., D.C., P.D. Keizer, and J. Dale. 1978. Temporal variations and probable origins of hydrocarbons in the water column of Bedford basin, Nova Scotia. Est. Coast. Shelf Sci. 7, 243–256.CrossRefGoogle Scholar
  13. Harwati, T.U., Y. Kasai, Y. Kodama, D. Susilaningshi, and K. Watanabe. 2007. Characterization of diverse hydrocarbon-degrading bacteria isolated from Indonesian seawater. Microb. Environ. 22, 412–415.CrossRefGoogle Scholar
  14. Jung, S.W., Y.H. Kang, T. Katano, B.H. Kim, S.Y. Cho, J.H. Lee, Y.O. Kim, and M.S. Han. 2010. Testing additions of Pseudomonas fluorescens HYK0210-SK09 to mitigate blooms of the diatom Stephanodiscus hantzschii in small- and large-scale mesocosms. J. Appl. Phycol. 22, 409–419.CrossRefGoogle Scholar
  15. Jung, J.H., U.H. Yim, G.M. Han, and W.J. Shim. 2009. Biochemical changes in rockfish, Sebastes schlegeli, exposed to dispersed crude oil. Comp. Biochem. Physiol. C. 150, 218–223.Google Scholar
  16. Kim, M., U.H. Yim, S.H. Hong, J.H. Jung, H.W. Choi, J. An, J. Won, and W.J. Shim. 2009. Hebei spirit oil spill monitored on site by fluorometric detection of residual oil in coastal waters off Taean, Korea. Mar. Pollut. Bull. 60, 383–389.PubMedCrossRefGoogle Scholar
  17. Lännergren, C. 1978. Net- and nanoplankton: effects of an oil spill in the North Sea. Bot. Mar. 21, 353–356.CrossRefGoogle Scholar
  18. Lee, R.F., M. Takahashi, J.R. Beers, W.H. Thomas, D.L.R. Seibert, P. Koeller, and D.R. Green. 1977. Controlled ecosystems: their use in the study of the effects of petroleum hydrocarbons on plankton, pp. 323–342. In Vernberg, F.J., A. Calabrese, F.P. Thurberg, and W.B. Vernberg (eds.), Physiological responses of marine biota to pollutants. Academic Press, London, UK.Google Scholar
  19. MacNaughton, S.J., J.R. Stephen, A.D. Venosa, G.A. Davis, Y.J. Chang, and D.C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65, 3566–3574.PubMedGoogle Scholar
  20. Mahoney, B.M. and H.H. Haskin. 1980. The effects of petroleum hydrocarbons on the growth of phytoplankton recognized as food forms for the eastern oyster, Crassostrea virginica Gmelin. Environ. Pollut. 22, 123–132.CrossRefGoogle Scholar
  21. Marchand, J.C., J.C. Caprais, and P. Pignet. 1988. Hydrocarbons and halogenated hydrocarbons in the coastal waters of the western Mediterranean (France). Mar. Environ. Res. 25, 131–159.CrossRefGoogle Scholar
  22. Massana, R., E.F. DeLong, and C. Pedros-Alio. 2000. A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl. Environ. Microbiol. 66, 1777–1787.PubMedCrossRefGoogle Scholar
  23. Miller, M.C., V. Alexander, and R.J. Barsdate. 1978. The effects of oil spills on phytoplankton in an arctic lake and ponds. Arctic 31, 192–218.Google Scholar
  24. Muyzer, G., E.C. Dewaal, and A.G. Uitterlinden. 1993. Profiling of complex microbial-populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl. Environ. Microbiol. 59, 695–700.PubMedGoogle Scholar
  25. Nayar, S., B.P.L. Goh, and L.M. Chou. 2005. Environmental impacts of diesel fuel on bacteria and phytoplankton in a tropical estuary assessed using in situ mesocosms. Ecotoxicology 14, 397–412.PubMedCrossRefGoogle Scholar
  26. Pinhassi, J., F. Azam, J. Hemphälä, R.A. Long, J. Martinez, U.L. Zweifel, and Å. Hagström. 1999. Coupling between bacterioplankton species composition, polulation dynamics, and organic matter degradation. Aquat. Microb. Ecol. 17, 13–26.CrossRefGoogle Scholar
  27. Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identification and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948.CrossRefGoogle Scholar
  28. Pulich, Jr., W.M., K. Winters, and C. Van Baalen. 1974. The effects of a no. 2 fuel oil and two crude oils on the growth and photosynthesis of microalgae. Mar. Biol. 28, 87–94.Google Scholar
  29. Ramachandran, S.D., P.V. Hodson, C.W. Khan, and K. Lee. 2004. Oil dispersant increases PAH uptake by fish exposed to crude oil. Ecotoxicol. Environ. Saf. 59, 300–308.PubMedCrossRefGoogle Scholar
  30. Reid, D.G. and G.R. MacFarlane. 2003. Potential biomarkers of crude oil exposure in the gastropod mollusk, Austrocochlea porcata: laboratory and manipulative field studies. Environ. Pollut. 126, 147–155.PubMedCrossRefGoogle Scholar
  31. Röling, W.F.M., M.G. Milner, D.M. Jones, K. Lee, F. Daniel, R.J.P. Swannell, and I.M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68, 5537–5548.PubMedCrossRefGoogle Scholar
  32. Soclo, H.H., P.H. Garrigues, and M. Ewald. 2000. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Contonou (Benin) and Aquitaine (France) areas. Mar. Pollut. Bull. 40, 387–396.CrossRefGoogle Scholar
  33. Stephensen, E., J. Svarvarsson, J. Sturve, G. Ericson, M. Adolfsson-Erici, and L. Förlin. 2000. Biochemical indicators of pollution exposure in shorthorn sculpin (Myoxocephalus scorpius), caught in four harbours on the southwest coast of Iceland. Aquat. Toxicol. 48, 431–442.PubMedCrossRefGoogle Scholar
  34. Vargo, G.A., M. Hutchins, and G. Almquist. 1982. The effect of low, chronic levels of no. 2 fuel oil on natural phytoplankton assemblages in microcosms: 1. Species composition and seasonal succession, Mar. Environ. Res. 6, 245–264.CrossRefGoogle Scholar
  35. Walker, J.D., R.R. Colwell, Z. Vaituzis, and S.A. Meyer. 1975. Petroleum degrading achlorophyllous alga Prototheca zopfii. Nature 254, 423–424.CrossRefGoogle Scholar
  36. Wells, P.G. and J.A. Percy. 1985. Effects of oil on arctic invertebrates, pp. 101–156. In F.R. Engelhardt (ed.), Petroleum effects in the arctic environment. Elsevier Applied Science Pub., Essex, England.Google Scholar
  37. Widdows, J., T. Bakke, B.L. Bayne, P. Donkin, D.R. Livingstone, D.M. Lowe, M.N. Moore, S.V. Evans, and S.L. Moore. 1982. Response of Mytilus edulis on exposure to the water-accommodated fraction of North Sea oil. Mar. Biol. 67, 15–31.CrossRefGoogle Scholar
  38. Wolfe, M.F., G.J.B. Schwartz, S. Singaram, E.E. Mielbrecht, R.S. Tjeerdema, and M.L. Sowby. 1998. Influence of dispersants on the bioavailability of naphthalene from the water-accommodated fraction crude oil to the golden brown algae, Isochrysis galbana. Arch. Environ. Contam. Toxicol. 35, 274–280.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Seung Won Jung
    • 1
  • Joon Sang Park
    • 2
  • Oh Youn Kown
    • 1
  • Jung-Hoon Kang
    • 1
  • Won Joon Shim
    • 3
  • Young-Ok Kim
    • 1
  1. 1.South Sea Environment Research DepartmentKorea Ocean Research & Development InstituteGeojeRepublic of Korea
  2. 2.Department of BiologySangmyung UniversitySeoulRepublic of Korea
  3. 3.Oil and POPs Research GroupKorea Ocean Research & Development InstituteGeojeRepublic of Korea

Personalised recommendations