Advertisement

The Journal of Microbiology

, Volume 48, Issue 6, pp 867–871 | Cite as

Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea

  • Min-Young Jung
  • Woon Kee Paek
  • In-Soon Park
  • Jeong-Ran Han
  • Yeseul Sin
  • Jayoung Paek
  • Moon-Soo Rhee
  • Hongik Kim
  • Hong Seok Song
  • Young-Hyo Chang
Note

Abstract

A Gram-positive, rod-shaped, endospore-forming organism, strain BL3-6T, was isolated from tidal flat sediments of the Yellow Sea in the region of Tae-An. A 16S rRNA gene sequence analysis demonstrated that this isolate belongs to the Bacillus cereus group, and is closely related to Bacillus mycoides (99.0% similarity), Bacillus thuringiensis (99.0%), Bacillus weihenstephanensis (99.0%), Bacillus cereus (98.9%), Bacillus anthracis (98.8%), and Bacillus pseudomycoides (98.1%). The phylogenetic distance from any validly described Bacillus species outside the Bacillus cereus group was less than 95.6%. The DNA G+C content of the strain was 39.4 mol% and the major respiratory quinone was menaquinone-7. The major cellular fatty acids were iso-C14:0 (17.8%), iso-C16:0 (15.8%), and iso-C12:0 (11.3%). The diagnostic amino acid of the cell wall was meso-diaminopimelic acid and the major cell wall sugar was galactose. The results of DNA-DNA hybridization (<55.6%) and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain BL3-6T from the published Bacillus species. BL3-6T therefore represents a new species, for which the name Bacillus gaemokensis sp. nov. is proposed, with the type strain BL3-6T (=KCTC 13318T =JCM 15801T).

Keywords

B. cereus B. gaemokensis sp. nov. phylogenetic new species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, I., A. Yokota, A. Yamazoe, and T. Fujiwara. 2007. Proposal of Lysinibacillus boronitolerans gen. nov., sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol. 57, 1117–1125.PubMedCrossRefGoogle Scholar
  2. Ash, C., J.A. Farrow, M. Dorsch, E. Stackebrandt, and M.D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41, 343–346.PubMedCrossRefGoogle Scholar
  3. Cardazzo, B., E. Negrisolo, L. Carraro, L. Alberghini, T. Patarnello, and V. Giaccone. 2008. Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl. Environ. Microbiol. 74, 850–860.PubMedCrossRefGoogle Scholar
  4. Chang, Y.H., J. Han, J. Chun, K.C. Lee, M.S. Rhee, Y.B. Kim, and K.S. Bae. 2002. Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int. J. Syst. Evol. Microbiol. 52, 377–381.PubMedGoogle Scholar
  5. Chang, Y.H., M.Y. Jung, I.S. Park, and H.M. Oh. 2008. Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int. J. Syst. Evol. Microbiol. 58, 2316–2320.PubMedCrossRefGoogle Scholar
  6. Claus, D. and R.C.W. Berkeley. 1986. Genus Bacillus Cohn 1872, pp. 1105–1140. In P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (eds.), Bergey’s manual of systematic bacteriology, vol. 2. The Williams and Wilkins Co., Baltimore, USA.Google Scholar
  7. Drobniewski, F.A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6, 324–338.PubMedGoogle Scholar
  8. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.CrossRefGoogle Scholar
  9. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.PubMedCrossRefGoogle Scholar
  10. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 40, 783–791.CrossRefGoogle Scholar
  11. Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c, Seattle: Department of Genetics, University of Washington, USA.Google Scholar
  12. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  13. Gonzalez, J.M. and C. Saiz-Jimenez. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.PubMedCrossRefGoogle Scholar
  14. Granum, P.E. and T. Lund. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157, 223–228.PubMedCrossRefGoogle Scholar
  15. Henderson, I., C.J. Duggleby, and P.C.B. Turnbull. 1994. Differentiation of Bacillus antliracis from other Bacillus cereus group bacteria with the PCR. Int. J. Syst. Bacteriol. 44, 99–105.PubMedCrossRefGoogle Scholar
  16. Jackson, P.J., E.A. Walthers, A.S. Kalif, K.L. Richmond, D.M. Adair, K.K. Hill, C.R. Kuske, G.L. Andersen, K.H. Wilson, M. Hugh-Jones, and P. Keim. 1997. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates. Appl. Environ. Microbiol. 63, 1400–1405.PubMedGoogle Scholar
  17. Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. In H.N. Munro (ed.). Academic Press, New York, USA.Google Scholar
  18. Kaneko, T., R. Nozaki, and K. Aizawa. 1978. Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol. 22, 639–641.PubMedGoogle Scholar
  19. Kim, W., J.Y. Kim, S.L. Cho, S.W. Nam, J.W. Shin, Y.S. Kim, and H.S. hin. 2008. Glycosyltransferase — a specific marker for the discrimination of Bacillus anthracis from the Bacillus cereus group. J. Med. Microbiol. 57, 279–286.PubMedCrossRefGoogle Scholar
  20. Komagata, K. and K. Suzuki. 1987. Lipid and cell-wall analysis in bacterial systematics. In Method in Microbiology, vol. 19, pp. 161–207. R.R. Colwell and R. Grigorova (eds.). Academic press, London, UK.Google Scholar
  21. Lechner, S., R. Mayr, K.P. Francis, B.M. Pruss, T. Kaplan, E. Wiessner-Gunkel, G.S. Stewart, and S. Scherer. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 48, 1373–1382.PubMedCrossRefGoogle Scholar
  22. Nakamura, L.K. 1998. Bacillus pseudomycoides sp. nov. Int. J. Syst. Bacteriol. 48, 1031–1035.PubMedCrossRefGoogle Scholar
  23. Nakamura, L.K. and M.A. Jackson. 1995. Clarification of the taxonomy of Bacillus mycoides. J. Appl. Microbiol. 45, 46–49.Google Scholar
  24. Priest, F.G., M. Goodfellow, and C. Todd. 1988. A numerical classification of the genus Bacillus. J. Gen. Microbiol. 134, 1847–1882.PubMedGoogle Scholar
  25. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  26. Schleifer, K.H. and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477.PubMedGoogle Scholar
  27. Seki, T., C. Chung, H. Mikami, and Y. Oshima. 1978. Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int. J. Syst. Bacteriol. 28, 182–189.CrossRefGoogle Scholar
  28. Smibert, R.M. and N.R. Krieg. 1994. Phenotypic characterization, pp. 607–654. In P. Gerhardt, R.G.E. Murray, W.A. Wood, and N.R. Krieg (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C., USA.Google Scholar
  29. Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Microbiol. 44, 846–849.Google Scholar
  30. Staneck, J.L. and G.D. Roberts. 1974. Simplified approach to identification of aerobic actinomycetes by thin layer chromatography. Appl. Microbiol. 28, 226–231.PubMedGoogle Scholar
  31. Stenfors Arnesen, L.P., A. Fagerlund, and P.E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32, 579–606.PubMedCrossRefGoogle Scholar
  32. Venkateswaran, K., M. Kempf, F. Chen, M. Satomi, W. Nicholson, and R. Kern. 2003. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant. Int. J. Syst. Evol. Microbiol. 53, 165–172.PubMedCrossRefGoogle Scholar
  33. von Stetten, F., R. Mayr, and S. Scherer. 1999. Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis population in tropical temperate and alpine soil. Environ. Microbiol. 1, 503–515.CrossRefGoogle Scholar
  34. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, and et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Min-Young Jung
    • 1
    • 5
  • Woon Kee Paek
    • 2
  • In-Soon Park
    • 1
  • Jeong-Ran Han
    • 1
  • Yeseul Sin
    • 1
  • Jayoung Paek
    • 1
  • Moon-Soo Rhee
    • 1
  • Hongik Kim
    • 3
  • Hong Seok Song
    • 4
  • Young-Hyo Chang
    • 1
  1. 1.Korean Collection for Type Cultures, Biological Resource CenterKRIBBDaejeonRepublic of Korea
  2. 2.National Science MuseumDaejeonRepublic of Korea
  3. 3.R&D Division, Vitabio Inc.DaejeonRepublic of Korea
  4. 4.R&D DivisionKorea Gas CorporationAnsanRepublic of Korea
  5. 5.Department of Microbiology, College of MedicineChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations