Advertisement

The Journal of Microbiology

, Volume 48, Issue 5, pp 689–694 | Cite as

Molecular characteristics and resistant mechanisms of imipenem-resistant Acinetobacter baumannii isolates in Shenyang, China

  • Jing Ping ZhangEmail author
  • Wan Zhu
  • Su Fei Tian
  • Yun Zhuo Chu
  • Bai Yi Chen
Article

Abstract

The investigation was carried out to elucidate the molecular characteristics and resistant mechanisms of imipenem-resistant Acinetobacter baumannii. Thirty-seven isolates were collected from January 2007 to December 2007. The homology of the isolates was analyzed by both pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The genes of β-lactamases, adeB, and class 1 integron were polymerase chain reaction amplified. Genotype analysis of the 37 A. baumannii isolates by PFGE revealed the circulation of four PFGE types (A-D); the A- and B-type accounted for 48.6% and 40.5%, respectively. MLST showed the existence of three allelic profiles. The agar dilution method was carried out to determine the MIC of imipenem, in the absence or presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP, 10 μg/ml). The MICs of the strains to imipenem were between 16 μg/ml and 128 μg/ml. When CCCP was added, a MIC decrease of at least four-fold was observed in 20 isolates, which belonged to the A- or C-type. AdeB and bla PER-1 genes were each detected in 35 isolates, bla OXA-23 gene in 34 isolates and bla OXA-58-like gene in 24 isolates. All isolates harbored bla OXA-51-like genes. No isolates carried the bla IMP-1 gene. Integron was detected in 25 isolates, which mediated the resistance to aminoglycosides and rifampin. The epidemiologic data suggested that the increasing infection of A. baumannii in our hospital was mainly caused by the inter-hospital spread of two epidemic clones. The AdeABC efflux system may be the important factor that leads to the high level of imipenem-resistance in PFGE A-type.

Keywords

A. baumannii PFGE MLST β-lactamase efflux system integron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afzal-Shah, M., N. Woodford, and D.M. Livermore. 2001. Characterization of OXA-25, OXA-26, OXA-27, molecular class D betalactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumanni. Antimicrob. Agents Chemother. 45, 583–588.PubMedCrossRefGoogle Scholar
  2. Bertini, A., A. Giordano, P. Varesi, L. Villa, C. Mancini, and A. Carattoli. 2006. First report of the plasmid-mediated carbapenemhydrolyzing oxacillinase OXA-58 in Acinetobacter baumannii isolates in Italy. Antimicrob. Agents Chemother. 50, 2268–2269.PubMedCrossRefGoogle Scholar
  3. Brown, S. and S. Amyes. 2006. OXA-lactamases in Acinetobacter: the story so far. J. Antimicrob. Chemother. 57, 1–3.PubMedCrossRefGoogle Scholar
  4. Clinical and Laboratory Standards Institute. 2006. Performance Standards for Antimicrobial Susceptibility Testing: Sixteenth Informational Supplement M100-S16. Clinical and Laboratory Standards Institute, Wayne, Pa, USA.Google Scholar
  5. Cetin, E.S., R. Durmaz, T. Tetik, B. Otlu, S. Kaya, and A. Cali kan. 2009. Epidemiologic characterization of nosocomial Acinetobacter baumannii infections in a Turkish university hospital by pulsedfield gel electrophoresis. Am. J. Infect Control. 37, 56–64.PubMedCrossRefGoogle Scholar
  6. Coelho, J., N. Woodford, M. Afzal-Shah, and D. Livermore. 2006. Occurrence of OXA-58-like carbapene-mases in Acinetobacter spp. Collected over 10 years in three continents. Antimicrob. Agents Chemother. 50, 756–758.PubMedCrossRefGoogle Scholar
  7. Dalla-Costa, L.M., J.M. Coelho, H.A. Souza, M.E. Castro, C.J. Stier, K.L. Bragagnolo, A. Rea-Neto, S.R. Penteado-Filho, D.M. Livermore, and N. Woodford. 2003. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the OXA-23 enzyme in Curitiba, Brazil. J. Clin. Microbiol. 41, 3403–3406.PubMedCrossRefGoogle Scholar
  8. Dijkshoorn, L., H. Aucken, P. Gerner-Smidt, P. Janssen, M.E. Kaufmann, J. Garaizar, J. Ursing, and T.L. Pitt. 1996. Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. J. Clin. Microbiol. 34, 1519–1525.PubMedGoogle Scholar
  9. Gerner-Smidt, P. 1992. Ribotyping of the Acinetobacter calcoaceticus Acinetobacter baumannii complex. J. Clin. Microbiol. 30, 2680–2685.PubMedGoogle Scholar
  10. Gouby, A., M.J. Carles-Nurit, N. Bouziges, G. Bourg, R. Mesnard, and P.J. Bouvet. 1992. Use of pulsed-field gel electrophoresis for investigation of hospital outbreaks of Acinetobacter baumannii. J. Clin. Microbiol. 30, 1588–1591.PubMedGoogle Scholar
  11. Grundmann, H., S. Hori, M.C. Enright, C. Webster, A. Tami, E.J. Feil, and T. Pitt. 2002. Determining the genetic structure of the natural population of Staphylococcus aureus: a comparison of multilocus sequence typing with pulsed-field gel electrophoresis, randomly amplified polymorphic DNA analysis, and phage typing. J. Clin. Microbiol. 40, 4544–4546.PubMedCrossRefGoogle Scholar
  12. Grundmann, H.J., K.J. Towner, L. Dijkshoorn, P. Gerner-Smidt, M. Maher, H. Seifert, and M. Vaneechoutte. 1997. Multi-center study using standardized protocols and reagents for evaluation of reproducibility of PCR based fingerprinting of Acinetobacter spp. J. Clin. Microbiol. 35, 3071–3077.PubMedGoogle Scholar
  13. Héritier, C., A. Dubouix, L. Poirel, N. Marty, and P. Nordmann. 2005. A nosocomial outbreak of Acinetobacter baumannii isolates expressing the carbapenem-hydrolysing oxacillinase OXA-58. J. Antimicrob. Chemother. 55, 115–118.PubMedCrossRefGoogle Scholar
  14. Homan, W.L., D. Tribe, S. Poznanski, M. Li, G. Hogg, E. Spalburg, J.D. Van Embden, and R.J. Willems. 2002. Multilocus sequence typing scheme for Enterococcus faecium. J. Clin. Microbiol. 40, 1963–1971.PubMedCrossRefGoogle Scholar
  15. Jeon, B., S.H. Jeong, I.K. Bae, S.B. Kwon, K. Lee, D. Young, J.H. Lee, J.S. Song, and S.H. Lee. 2005. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23-lactamase in Korea. J. Clin. Microbiol. 43, 2241–2245.PubMedCrossRefGoogle Scholar
  16. Koeleman, J.G., J. Stoof, M.W. Van Der Bijl, C.M. Vandenbroucke-Grauls, and P.H. Savelkoul. 2001. Identification of epidemic strains of Acinetobacter baumannii by Integrase Gene PCR. J. Clin. Microbiol. 39, 8–13.PubMedCrossRefGoogle Scholar
  17. Lévesque, C., L. Piché, C. Larose, and P.H. Roy. 1995. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 39, 185–191.PubMedGoogle Scholar
  18. Magnet, S., P. Courvalin, and T. Lambert. 2001. Resistancenodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother. 45, 3375–3380.PubMedCrossRefGoogle Scholar
  19. Maiden, M.C., J.A. Bygraves, E. Feil, G. Morelli, J.E. Russell, R. Urwin, Q. Zhang, J. Zhou, K. Zurth, D.A. Caugant, I.M. Feavers, M. Achtman, and B.G. Spratt. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95, 3140–3145.PubMedCrossRefGoogle Scholar
  20. Marchand, I., L. Damier-Piolle, P. Courvalin, and T. Lambert. 2004. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob. Agents Chemother. 48, 3298–3304.PubMedCrossRefGoogle Scholar
  21. Poirel, L., A. Karim, A. Mermat, I. Le Thomas, H. Vahaboglu, C. Richard, and P. Nordmann. 1999. Extended-spectrum betalactamase-producing strain of Acinetobacter baumannii isolated from a patient in France. J. Antimicrob. Chemother. 43, l57–165.CrossRefGoogle Scholar
  22. Poirel, L. and P. Nordmann. 2006. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin. Microbiol. Infect. 12, 826–836.PubMedCrossRefGoogle Scholar
  23. Pournaras, S., A. Markogiannakis, A. Ikonomidis, L. Kondyli, K. Bethimouti, A.N. Maniatis, N.J. Legakis, and A. Tsakris. 2006. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J. Antimicrob. Chemother. 57, 557–561.PubMedCrossRefGoogle Scholar
  24. Riccio, M.L., N. Franceschini, L. Boschi, B. Caravelli, G. Cornaglia, R. Fontana, G. Amicosante, and G.M. Rossolini. 2000. Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob. Agents Chemother. 44, 1229–1235.PubMedCrossRefGoogle Scholar
  25. Sergio, G.B., H. Seifert, C. Hippler, M.A. Luzon, H. Wisplinghoff, and F. Rodríguez-Valera. 2005. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J. Clin. Microbiol. 43, 4382–4390.CrossRefGoogle Scholar
  26. Shi, W.F., J.P. Jiang, N. Xu, Z.M. Huang, and Y.Y. Wang. 2005. Inhibitory effects of reserpine and carbonyl cyanidem-chlorophenylhydrazone on fluoroquinolone resistance of Acinetobacter baumannii. Clin. Med. J. (Engl). 118, 340–343.Google Scholar
  27. Tenover, F.C., R.D. Arbeit, R.V. Goering, P.A. Mickelsen, B.E. Murray, D.H. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33, 2233–2239.PubMedGoogle Scholar
  28. Tian, S.F., B.Y. Chen, Y.Z. Chu, and S. Wang. 2008. Prevalence of rectal carriage of extended-spectrum -lactamase-producing Escherichia coli among elderly people in community settings in China. Can. J. Microbiol. 54, 781–785.PubMedCrossRefGoogle Scholar
  29. Vahaboglu, H., F. Budak, M. Kasap, G. Gacar, S. Torol, A. Karadenizli, F. Kolayli, and C. Eroglu. 2006. High prevalence of OXA-51-type class D-lactamases among ceftazidime-resistant clinical isolates of Acinetobacter spp.: co-existence with OXA-58 in multiple centers. J. Antimicrob. Chemother. 58, 537–542.PubMedCrossRefGoogle Scholar
  30. Van, L.M., H. Goossens, and ARPAC Steering Group. 2004. Antimicrobial resistance of Acinetobacter spp. in Europe. Clin. Microbiol. Infect. 10, 684–704.CrossRefGoogle Scholar
  31. Wang, H., M. Chen, Y. Ni, Y. Liu, H. Sun, Y. Yu, X. Yu, Y. Mei, M. Liu, Z. Sun, Y. Chu, Z. Hu, and X. Huang. 2005. Antimicrobial resistance analysis among nosocomial Gram-negative bacilli from 10 teaching hospitals in China. Chin. J. Lab. Med. 28, 1295–1303.Google Scholar
  32. Wang, H., P. Guo, H. Sun, H. Wang, Q. Yang, M. Chen, Y. Xu, and Y. Zhu. 2007. Molecular epidemiology of clinical isolates of carbapenemresistant Acinetobacter spp. from Chinese hospitals. Antimicrob. Agents Chemother. 51, 4022–4028.PubMedCrossRefGoogle Scholar
  33. Yoo, J.H., J.H. Choi, W.S. Shin, D.H. Huh, Y.K. Cho, K.M. Kim, M.Y. Kim, and M.W. Kang. 1999. Application of infrequentrestriction-site PCR to clinical isolates of Acinetobacter baumannii and Serratia marcescens. J. Clin. Microbiol. 37, 3108–3112.PubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jing Ping Zhang
    • 1
    Email author
  • Wan Zhu
    • 2
  • Su Fei Tian
    • 3
  • Yun Zhuo Chu
    • 3
  • Bai Yi Chen
    • 1
  1. 1.Division of Infectious DiseasesThe First Hospital of China Medical UniversityShenyangP. R. China
  2. 2.Department of Nosocomial Infection ControlThe First Hospital of China Medical UniversityShenyangP. R. China
  3. 3.Department of Laboratory MedicineThe First Hospital of China Medical UniversityShenyangP. R. China

Personalised recommendations