Advertisement

The Journal of Microbiology

, Volume 48, Issue 5, pp 559–565 | Cite as

Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion

  • Regupathy Thamizh Vendan
  • Young Joon Yu
  • Sun Hee Lee
  • Young Ha Rhee
Article

Abstract

Endophytic bacteria have been found in virtually every plant studied, where they colonize the internal tissues of their host plant and can form a range of different beneficial relationships. The diversity of bacterial endophytes associated with ginseng plants of varying age levels in Korea was investigated. Fifty-one colonies were isolated from the interior of ginseng stems. Although a mixed composition of endophyte communities was recovered from ginseng based on the results of 16S rDNA analysis, bacteria of the genus Bacillus and Staphylococcus dominated in 1-year-old and 4-year-old plants, respectively. Phylogenetic analysis revealed four clusters: Firmicutes, Actinobacteria, α-Proteobacteria, and γ-Proteobacteria, with Firmicutes being predominant. To evaluate the plant growth promoting activities, 18 representative isolates were selected. Amplification of nifH gene confirmed the presence of diazotrophy in only two isolates. Half of the isolates solubilized mineral phosphate. Except four, all the other endophytic isolates produced significant amounts of indole acetic acid in nutrient broth. Iron sequestering siderophore production was detected in seven isolates. Isolates E-I-3 (Bacillus megaterium), E-I-4 (Micrococcus luteus), E-I-8 (B. cereus), and E-I-20 (Lysinibacillus fusiformis) were positive for most of the plant growth promoting traits, indicating their role in growth promotion of ginseng.

Keywords

endophytic bacteria ginseng diversity plant growth promoting traits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araújo, W.L., J. Marcon, W. Maccheroni, J.D. van Elas, Jr., J.W.L. van Vuurde, and J.L. Azevedo. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68, 4906–4914.CrossRefPubMedGoogle Scholar
  2. Bai, Y., D.A. Frederic, L.S. Donald, and T.D. Brian. 2002. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48, 230–238.CrossRefPubMedGoogle Scholar
  3. Burgmann, H., F. Widmer, W. Von Sigler, and J. Zeyer. 2004. New molecular screening tools for analysis of free-living diazotrophs in soil. Appl. Environ. Microbiol. 70, 240–247.CrossRefPubMedGoogle Scholar
  4. Chanway, C.P., M. Shishido, J. Nairn, S.S. Jungwirth, J. Markham, G. Xiao, and F.B. Holl. 2000. Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For. Ecol. Manag. 133, 81–88.CrossRefGoogle Scholar
  5. Chi, F., S.H. Shen, H.P. Cheng, Y.X. Jing, Y.G. Yanni, and F.B. Dazzo. 2005. Ascending migration of endophytic rhizobia from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol. 71, 7271–7278.CrossRefPubMedGoogle Scholar
  6. Cho, K.M., S.Y. Hong, S.M. Lee, Y.H. Kim, G.G. Kahng, Y.P. Lim, H. Kim, and H.D. Yun. 2007. Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb. Ecol. 54, 341–351.CrossRefPubMedGoogle Scholar
  7. Cho, S.J., S.R. Park, M.K. Kim, W.J. Lim, S.K. Ryu, C.L. An, S.Y. Hong, and et al. 2002. Endophytic Bacilus sp. isolated from the interior of ballon flower root. Biosci. Biotechnol. Biochem. 66, 1270–1275.CrossRefPubMedGoogle Scholar
  8. Costacurta, A. and J. Vanderleyden. 1995. Synthesis of phytohormones by plant associated bacteria. Critical Rev. Microbiol. 21, 1–18.CrossRefGoogle Scholar
  9. Feng, Y., D. Shen, and W. Song. 2006. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J. Appl. Microbiol. 100, 938–945.CrossRefPubMedGoogle Scholar
  10. Ferreira, E.P., A.N. Dusi, G.R. Xavier, and N.G. Rumjanek. 2008. Rhizosphere bacterial communities of potato cultivars evaluated through PCR-DGGE profiles. Pesq. Agropec. Bras. 43, 605–612.CrossRefGoogle Scholar
  11. Goldstein, A.H. 1986. Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am. J. Alter. Agric. 1, 51–57.Google Scholar
  12. Goldstein, A.H., R.D. Rogers, and G. Mead. 1993. Separating phosphate from ores via bioprocessing. Biotechnology 11, 1250–1254.Google Scholar
  13. Hartmann, A., M. Singh, and W. Klingmueller. 1983. Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Can. J. Microbiol. 29, 916–923.CrossRefGoogle Scholar
  14. Jha, P.N. and A. Kumar. 2007. Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J. Appl. Microbiol. 103, 1311–1320.CrossRefPubMedGoogle Scholar
  15. Kanvinde, L. and G.R.K. Sastry. 1990. Agrobacterium tumefaciens is a diazotrophic bacterium. Appl. Environ. Microbiol. 56, 2087–2092.PubMedGoogle Scholar
  16. Kobayashi, D.Y. and J.D. Palumbo. 2000. Bacterial endophytes and their effects on plants and uses in agriculture, pp. 199–233. In C.W. Bacon and J.F. White (eds.), Microbial endophytes. Marcel Dekker, Inc., New York, N.Y., USA.Google Scholar
  17. Lacava, P.T., M.E. Silva-Stenico, W.L. Araújo, V.C. Simionato, E. Carrilho, S.M. Tsai, and J.L. Azevedo. 2008. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. Pauca. Pesq. Agropec. Bras. 43, 521–528.Google Scholar
  18. Lodewyck, C., J. Vangronsveld, F. Porteous, E.R.B. Moore, S. Taghavi, M. Mezgeay, and D.V.D. Lelie. 2002. Endophytic bacteria and their potential application. Crit. Rev. Plant. Sci. 86, 583–606.CrossRefGoogle Scholar
  19. McGinnis, S. and T.L Madden. 2004. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, 20–25.CrossRefGoogle Scholar
  20. Park, M.S., S.R. Jung, M.S. Lee, K.O. Kim, J.O. Do, K.H. Lee, S.B. Kim, and K.S. Bae. 2005a. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J. Microbiol. 43, 219–227.PubMedGoogle Scholar
  21. Park, M., C. Kim, J. Yang, H. Lee, W. Shin, S. Kim, and T. Sa. 2005b. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160, 127–133.CrossRefPubMedGoogle Scholar
  22. Potrich, D.P., L.M.P. Passaglia, and I.S. Schrank. 2003. Partial characterization of nif genes from the bacterium Azospirillum amazonense. Braz. J. Med. Biol. Rev. 34, 1105–1113.Google Scholar
  23. Qiu, F., Y. Huang, L. Sun, X. Zhang, Z. Liu, and W. Song. 2007. Leifsonia ginsengi sp. nov., isolated from ginseng root. Int. J. Syst. Evol. Microbiol. 57, 405–408.CrossRefPubMedGoogle Scholar
  24. Ramesh, R., A.A. Joshi, and M.P. Ghanekar. 2009. Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L). World J. Microbiol. Biotechnol. 25, 47–55.CrossRefGoogle Scholar
  25. Reinhold-Hurek, B. and T. Hurek. 1998. Life in grasses: diazotrophic endophytes. Trends Microbiol. 6, 139–144.CrossRefPubMedGoogle Scholar
  26. Schwyn, B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56.CrossRefPubMedGoogle Scholar
  27. Seghers, D., L. Wittebolle, E.M. Top, W. Verstraete, and S.D. Siciliano. 2004. Impact of agricultural practice on the Zea mays L. endophytic community. Appl. Environ. Microbiol. 70, 1475–1482.CrossRefPubMedGoogle Scholar
  28. Sharma, A. and B.N. Johri. 2003. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol. Res. 158, 243–248.CrossRefPubMedGoogle Scholar
  29. Siciliano, S.D., N. Fortin, A. Mihoc, G. Wisse, S. Labelle, D. Beaumier, D. Ouellette, and et al. 2001. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol. 67, 2469–2475.CrossRefPubMedGoogle Scholar
  30. Steward, G.F., B.D. Jenkins, B.B. Ward, and J.P. Zehr. 2004. Development and testing of a DNA microarray to assess nitrogenase (nifH) gene diversity. Appl. Environ. Microbiol. 70, 1455–1465.CrossRefPubMedGoogle Scholar
  31. Surette, M.A., A.V. Sturz, R.R. Lada, and J. Nowak. 2003. Bacterial endophytes in processing carrots (Daucas carota L. var. sativus): their location, population density, biodiversity and their effects on plant growth. Plant Soil 253, 381–390.CrossRefGoogle Scholar
  32. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.CrossRefPubMedGoogle Scholar
  33. Tompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.CrossRefGoogle Scholar
  34. Velázquez, E., M. Rojas, M.J. Lorite, R. Rivas, J.L. Zurdo-Piñeiro, M. Heydrich, and E.J. Bedmar. 2008. Genetic diversity of endophytic bacteria which could be found in the apoplastic sap of the medullary parenchym of the stem of healthy sugarcane plants. J. Basic Microbiol. 48, 118–124.CrossRefPubMedGoogle Scholar
  35. Yu, W.J., B.J. Lee, S.Y. Nam, D.C. Yang, and Y.W. Yun. 2003. Modulating effects of Korean ginseng saponins on ovarian function immature rats. Biol. Pharm. Bull. 26, 2574–2580.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Regupathy Thamizh Vendan
    • 1
  • Young Joon Yu
    • 2
  • Sun Hee Lee
    • 2
  • Young Ha Rhee
    • 2
  1. 1.Agricultural College & Research InstituteTamil Nadu Agricultural UniversityTiruchirappalliIndia
  2. 2.Department of MicrobiologyChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations