The Journal of Microbiology

, Volume 48, Issue 6, pp 767–770 | Cite as

Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system

Article

Abstract

The development of fungal biopesticides requires the efficient production of large numbers spores or other propagules. The current study used published information concerning carbon concentrations and C:N ratios to evaluate the effects of carbon and nitrogen sources on sporulation of Paecilomyces lilacinus (IPC-P and M-14) and Metarhizium anisopliae (SQZ-1-21 and RS-4-1) in a two-stage cultivation system. For P. lilacinus IPCP, the optimal sporulation medium contained urea as the nitrogen source, dextrin as the carbon source at 1 g/L, a C:N ratio of 5:1, with ZnSO4·7H2O at 10 mg/L and CaCl2 at 3 g/L. The optimal sporulation medium for P. lilacinus M-14 contained soy peptone as the nitrogen source and maltose as the carbon source at 2 g/L, a C:N ratio of 10:1, with ZnSO4·7H2O at 250 mg/L, CuSO4·5H2O at 10 mg/L, H3BO4 at 5 mg/L, and Na2MoO4·2H2O at 5 mg/L. The optimum sporulation medium for M. anisopliae SQZ-1-21 contained urea as the nitrogen source, sucrose as the carbon source at 16 g/ L, a C:N ratio of 80:1, with ZnSO4·7H2O at 50 mg/L, CuSO4·5H2O at 50 mg/L, H3BO4 at 5 mg/L, and MnSO4·H2O at 10 mg/L. The optimum sporulation medium for M. anisopliae RS-4-1 contained soy peptone as the nitrogen source, sucrose as the carbon source at 4 g/L, a C:N ratio of 5:1, with ZnSO4·7H2O at 50 mg/L and H3BO4 at 50 mg/L. All sporulation media contained 17 g/L agar. While these results were empirically derived, they provide a first step toward low-cost mass production of these biocontrol agents.

Keywords

M. anisopliae P. lilacinus nutrition sporulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cabanillas, E. and K.R. Barker. 1989. Impact of Paecilomyces lilacinus inoculum level and application time on control of Meloidogyne incognita on tomato. J. Nematol. 21, 115–120.PubMedGoogle Scholar
  2. Elson, M.K., D.A. Schisler, and M.A. Jackson. 1998. Carbon-tonitrogen ratio, carbon concentration, and amino acid composition of growth media influence conidiation of Helminthosposition solani. Mycologia 98, 406–413.CrossRefGoogle Scholar
  3. Engelkes, C.A., R.L. Nuclo, and D.R. Fravel. 1997. Effect of carbon, nitrogen, and carbon-to-nitrogen ratio on growth, sporulation and biocontrol efficacy of Taloromyces flavus. Phytopathology 87, 500–505.CrossRefPubMedGoogle Scholar
  4. Evans, R.C. and C.L. Black. 1981. Interaction between nitrogen sources and xylose affecting growth, conidiation, and polyphenoloxidase activity in Bipolaris maydis race T. Can. J. Bot. 59, 2102–2107.CrossRefGoogle Scholar
  5. Gao, L. and X.Z. Liu. 2009. A novel two-stage cultivation method to optimize carbon concentration and carbon-to-nitrogen ratio for sporulation of biocontrol fungi. Folia Microbiol. 54, 142–146.CrossRefGoogle Scholar
  6. Gao, L., M.H. Sun, X.Z. Liu, and Y.S. Che. 2007. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biological control fungi. Mycol. Res. 111, 87–92.CrossRefPubMedGoogle Scholar
  7. Gornova, I.B., E.P. Feofilova, V.M. Tereshina, E.A. Golovina, N.B. Krotkova, and V.P. Kholodova. 1992. Effect of carbohydrate content of Aspergillus japonicus spores on their survival in storage and subsequent germination. Mikerobiologiya 61, 549–554.Google Scholar
  8. Gray, S.N. and P.A. Markham. 1997. Model to explain the growth kinetics of the aphid-pathogenic fungus Erynia neoaphidis in liquid culture. Mycol. Res. 101, 1475–1483.CrossRefGoogle Scholar
  9. Harman, G.E., X. Jin, T.E. Stasz, G. Peruzzotti, A.C. Leopold, and A.G. Taylor. 1991. Production of conidial biomass of Trichoderma harzianum for biological control. Biol. Control 1, 23–28.CrossRefGoogle Scholar
  10. Jackson, M.A. and R.J. Bothast. 1990. Carbon concentration and carbon-to-nitrogen ratio influence submerged culture conidiation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Appl. Environ. Microbiol. 56, 3435–3438.PubMedGoogle Scholar
  11. Jackson, M.A., M.R. Mcguire, and L.A. Lacey. 1997. Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycol. Res. 101, 35–41.CrossRefGoogle Scholar
  12. Jackson, M.A. and D.A. Schisler. 1992. The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Appl. Environ. Microbiol. 58, 2260–2265.PubMedGoogle Scholar
  13. Jackson, M.A. and P.J. Slininger. 1993. Submerged culture conidial germination and conidiation of the bioherbicide Colletotrichum truncatum are influenced by the amino acid composition of the medium. J. Ind. Microbiol. 12, 417–422.CrossRefGoogle Scholar
  14. Jatala, P., R. Kaltenback, and M. Bocangel. 1979. Biological control of Meloidogyne incognita acrita and Globodera pallida on potatoes. J. Nematol. 11, 303.Google Scholar
  15. Jatala, P., R. Kaltenback, M. Bocangel, A.J. Devaus, and R. Campos. 1980. Field application of Paecilomyces lilacinus for controlling Meloidogyne incognita on potatoes. J. Nematol. 12, 226–227.Google Scholar
  16. Jenjins, N.E. and M.A. Goettel. 1997. Methods for mass production of microbial control agents of grasshoppers and locusts. Memoirs of the Entomological Society of Canada 171, 37–48.Google Scholar
  17. Kang, S.C., S. Park, and D.G. Lee. 1998. Isolation and characterization of a chitinase cDNA from the entomopathogenic fungus, Metarhizium anisopliae. FEMS Microbiol. Lett. 165, 267–271.PubMedGoogle Scholar
  18. Latgé, J.P. and J.J. Sanglier. 1985. Optimisation de la croissance et de la sporulation de Conidiobolus obscurus en milieu défini. Can. J. Bot. 63, 68–85.Google Scholar
  19. Leite, L.G., S.B. Alves, A. Batista, and D.W. Roberts. 2003. Effect of salts, vitamins, sugars and nitrogen sources on the growth of three genera of Entomophthorales: Batkoa, Furia, and Neozygites. Mycol. Res. 107, 872–878.CrossRefPubMedGoogle Scholar
  20. Liu, X.Z. and S.Y. Chen. 2002. Nutritional requirement of the nematophagous fungus Hirsutella rhossiliensis. Biocontrol. Sci. Technol. 12, 381–393.CrossRefGoogle Scholar
  21. Liu, X.Z. and S.Y. Chen. 2003. Nutritional requirements of Pochonia chlamydosporia and ARF18, fungi parasites of nematode eggs. J. Invertebr. Pathol. 83, 10–15.CrossRefPubMedGoogle Scholar
  22. Schisler, D.A., M.A. Jackson, and R.J. Bothast. 1991. Influence of nutrition during conidiation of Colletotrichum truncatum on conidial germination and efficacy in inciting disease on Sesbania exaltata. Phytopathology 81, 587–590.CrossRefGoogle Scholar
  23. Shah, P.A., M. Aebi, and U. Tuor. 1998. Method to immobilize the aphid-pathogenic fungus Erynia neoaphidis in an alginate matrix for biocontrol. Appl. Environ. Microbiol. 64, 4260–4263.PubMedGoogle Scholar
  24. Zaki, F.A. and D.S. Bhatti. 1990. Effect of castor (Ricinus communus) and the biocontrol fungus Paecilomyces lilacinus on Meloidogyne javanica. Nematologica 36, 114–122.CrossRefGoogle Scholar
  25. Zhang, S.A., D.A. Schisler, M.J. Boehm, and P.J. Slininger. 2005. Carbon-to-nitrogen ratio and carbon loading of production media influence freeze-drying survival and biocontrol efficacy of Cryptococcus nodaensis OH 182.9. Phytopathology 95, 626–631.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory of Systematic Mycology and Lichenology, Institute of MicrobiologyChinese Academy of SciencesBeijingP. R. China
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingP. R. China

Personalised recommendations