Advertisement

The Journal of Microbiology

, Volume 47, Issue 6, pp 682–685 | Cite as

Application of quantitative real-time PCR for enumeration of total bacterial, archaeal, and yeast populations in kimchi

  • Eun-Jin Park
  • Ho-Won Chang
  • Kyoung-Ho Kim
  • Young-Do Nam
  • Seong Woon Roh
  • Jin-Woo BaeEmail author
Articles

Abstract

Kimchi is a Korean traditional fermented food made of brined vegetables, with a variety of spices. Various microorganisms are associated with the kimchi fermentation process. This study was undertaken in order to apply quantitative real-time PCR targeting the 16S and 26S rRNA genes for the investigation of dynamics of bacterial, archaeal, and yeast communities during fermentation of various types of kimchi. Although the total bacterial and archaeal rRNA gene copy numbers increased during kimchi fermentation, the number of yeasts was not significantly altered. In 1 ng of bulk DNA, the mean number of rRNA gene copies for all strains of bacteria was 5.45×106 which was 360 and 50 times greater than those for archaea and yeast, respectively. The total gene copy number for each group of microorganisms differed among the different types of kimchi, although the relative ratios among them were similar. The common dominance of bacteria in the whole microbial communities of various types of kimchi suggests that bacteria play a principal role in the kimchi fermentation process.

Keywords

quantitative PCR kimchi bacteria archaea yeast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bae, J.W., S.K. Rhee, J.R. Park, W.H. Chung, Y.D. Nam, I. Lee, H. Kim, and Y.H. Park. 2005. Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl. Environ. Microbiol. 71, 8825–8835.CrossRefPubMedGoogle Scholar
  2. Butinar, L., S. Santos, I. Spencer-Martins, A. Oren, and N. Gunde-Cimerman. 2005. Yeast diversity in hypersaline habitats. FEMS Microbiol. Lett. 244, 229–234.CrossRefPubMedGoogle Scholar
  3. Chang, H.W., K.H. Kim, Y.D. Nam, S.W. Roh, M.S. Kim, C.O. Jeon, H.M. Oh, and J.W. Bae. 2008. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126, 159–166.CrossRefPubMedGoogle Scholar
  4. Chelo, I.M., L. Ze-Ze, L. Chambel, and R. Tenreiro. 2004. Physical and genetic map of the Weissella paramesenteroides DSMZ 20288 chromosome and characterization of different rrn operons by ITS analysis. Microbiology 150, 4075–4084.CrossRefPubMedGoogle Scholar
  5. Cho, J., D. Lee, C. Yang, J. Jeon, J. Kim, and H. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257, 262–267.CrossRefPubMedGoogle Scholar
  6. de Boer, E. and R.R. Beumer. 1999. Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microbiol. 50, 119–130.CrossRefPubMedGoogle Scholar
  7. Dolezel, J., J. Bartos, H. Voglmayr, and J. Greilhuber. 2003. Nuclear DNA content and genome size of trout and human. Cytometry 51, 127–128.CrossRefPubMedGoogle Scholar
  8. Furet, J.P., P. Quenee, and P. Tailliez. 2004. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int. J. Food Microbiol. 97, 197–207.CrossRefPubMedGoogle Scholar
  9. Hierro, N., B. Esteve-Zarzoso, A. Gonzalez, A. Mas, and J.M. Guillamon. 2006. Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Appl. Environ. Microbiol. 72, 7148–7155.CrossRefPubMedGoogle Scholar
  10. Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96, 317–323.PubMedGoogle Scholar
  11. Kim, M. and J. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103, 91–96.CrossRefPubMedGoogle Scholar
  12. Lee, C.W., C.Y. Ko, and D.M. Ha. 1992. Microfloral changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Kor. J. Appl. Microbiol. Biotechnol. 20, 102.Google Scholar
  13. Li, S.J., H.Y. Paik, and H. Joung. 2006. Dietary patterns are associated with sexual maturation in Korean children. Br. J. Nutr. 95, 817–823.CrossRefPubMedGoogle Scholar
  14. Loureiro, V. 2002. Spoilage yeasts in foods and beverages: characterization and ecology for improved diagnosis and control. Food Res. Int. 33, 247–256.CrossRefGoogle Scholar
  15. Martin, B., A. Jofre, M. Garriga, M. Pla, and T. Aymerich. 2006. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR. Appl. Environ. Microbiol. 72, 6040–6048.CrossRefPubMedGoogle Scholar
  16. Mheen, T.I. and T.W. Kwon. 1984. Effect of temperature and salt concentration on Kimchi fermentation. Kor. J. Food Sci. Technol. 16, 443–450.Google Scholar
  17. Nan, H.M., J.W. Park, Y.J. Song, H.Y. Yun, J.S. Park, T. Hyun, S.J. Youn, Y.D. Kim, J.W. Kang, and H. Kim. 2005. Kimchi and soybean pastes are risk factors of gastric cancer. World J. Gastroenterol. 11, 3175–3181.PubMedGoogle Scholar
  18. Oh, J.Y. and Y.S. Han. 2003. Purification and characterization of L-galactono-γ-lactone oxidase in Pichia sp. isolated from kimchi. Kor. J. Food Sci. Technol. 35, 1135–1142.Google Scholar
  19. Renard, A., P. Gomez di Marco, M. Egea-Cortines, and J. Weiss. 2008. Application of whole genome amplification and quantitative PCR for detection and quantification of spoilage yeasts in orange juice. Int. J. Food Microbiol. 126, 195–201.CrossRefPubMedGoogle Scholar
  20. Reynisson, E., H.L. Lauzon, H. Magnusson, G.O. Hreggvidsson, and V.T. Marteinsson. 2008. Rapid quantitative monitoring method for the fish spoilage bacteria Pseudomonas. J. Environ. Monit. 10, 1357–1362.CrossRefPubMedGoogle Scholar
  21. Ritalahti, K.M., B.K. Amos, Y. Sung, Q. Wu, S.S. Koenigsberg, and F.E. Loffler. 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl. Environ. Microbiol. 72, 2765–2774.CrossRefPubMedGoogle Scholar
  22. Roh, S.W., Y.D. Nam, H.W. Chang, Y. Sung, K.H. Kim, H.J. Lee, H.M. Oh, and J.W. Bae. 2007. Natronococcus jeotgali sp. nov., a halophilic archaeon isolated from shrimp jeotgal, a traditional fermented seafood from Korea. Int. J. Syst. Evol. Microbiol. 57, 2129–2131.CrossRefPubMedGoogle Scholar
  23. Roh, S.W., Y.D. Nam, H.W. Chang, Y. Sung, K.H. Kim, H.M. Oh, and J.W. Bae. 2007. Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 57, 2296–2298.CrossRefPubMedGoogle Scholar
  24. Ross, R.P., S. Morgan, and C. Hill. 2002. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79, 3–16.CrossRefPubMedGoogle Scholar
  25. Suzuki, M.T. and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625–630.PubMedGoogle Scholar
  26. Takai, K. and K. Horikoshi. 2000. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 66, 5066–5072.CrossRefPubMedGoogle Scholar
  27. Yeates, C., M.R. Gillings, A.D. Davison, N. Altavilla, and D.A. Veal. 1998. Methods for microbial DNA extraction from soil for PCR amplification. Biol. Proc. Online 1, 40–47.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eun-Jin Park
    • 1
  • Ho-Won Chang
    • 1
  • Kyoung-Ho Kim
    • 1
  • Young-Do Nam
    • 1
  • Seong Woon Roh
    • 1
  • Jin-Woo Bae
    • 1
    Email author
  1. 1.Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations