Advertisement

The Journal of Microbiology

, Volume 47, Issue 6, pp 673–681 | Cite as

Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition

  • Sarah R. Sattin
  • Cory C. Cleveland
  • Eran Hood
  • Sasha C. Reed
  • Andrew J. King
  • Steven K. Schmidt
  • Michael S. Robeson
  • Nataly Ascarrunz
  • Diana R. NemergutEmail author
Articles

Abstract

Past work in recently deglaciated soils demonstrates that microbial communities undergo shifts prior to plant colonization. To date, most studies have focused on relatively ‘long’ chronosequences with the ability to sample plant-free sites over at least 50 years of development. However, some recently deglaciated soils feature rapid plant colonization and questions remain about the relative rate of change in the microbial community in the unvegetated soils of these chronosequences. Thus, we investigated the forelands of the Mendenhall Glacier near Juneau, AK, USA, where plants rapidly establish. We collected unvegetated samples representing soils that had been ice-free for 0, 1, 4, and 8 years. Total nitrogen (N) ranged from 0.00∼0.14 mg/g soil, soil organic carbon pools ranged from 0.6∼2.3 mg/g soil, and both decreased in concentration between the 0 and 4 yr soils. Biologically available phosphorus (P) and pH underwent similar dynamics. However, both pH and available P increased in the 8 yr soils. Nitrogen fixation was nearly undetectable in the most recently exposed soils, and increased in the 8 yr soils to ∼5 ng N fixed/cm2/h, a trend that was matched by the activity of the soil N-cycling enzymes urease and β-l,4-N-acetyl-glucosa-minidase. 16S rRNA gene clone libraries revealed no significant differences between the 0 and 8 yr soils; however, 8 yr soils featured the presence of cyanobacteria, a division wholly absent from the 0 yr soils. Taken together, our results suggest that microbes are consuming allochtonous organic matter sources in the most recently exposed soils. Once this carbon source is depleted, a competitive advantage may be ceded to microbes not reliant on in situ nutrient sources.

Keywords

N fixation microbial community structure succession soil enzyme activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, E.B. and R. Burt. 1996. Soil development on moraines of Mendenhall Glacier, southeast Alaska.1. The moraines and soil morphology. Geoderma 72, 1–17.CrossRefGoogle Scholar
  2. Allison, V.J., L.M. Condron, D.A. Peltzer, S.J. Richardson, and B.L. Turner. 2007. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol. Biochem. 39, 1770–1781.CrossRefGoogle Scholar
  3. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  4. Ashelford, K.E., N.A. Chuzhanova, J.C. Fry, A.J. Jones, and A.J. Weightman. 2006. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl. Environ. Microbiol. 72, 5734–5741.CrossRefPubMedGoogle Scholar
  5. Bardgett, R.D., A. Richter, R. Bol, M.H. Garnett, R. Baumler, X.L. Xu, E. Lopez-Capel, D.A.C. Manning, P.J. Hobbs, I.R. Hartley, and W. Wanek. 2007. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. UK 3, 487–490.CrossRefGoogle Scholar
  6. Belnap, J. 1996. Soil surface disturbances in cold deserts: Effects on nitrogenase activity in cyanobacterial-lichen soil crusts. Biol. Fert. Soils 23, 362–367.CrossRefGoogle Scholar
  7. Bergman, B., J.R. Gallon, A.N. Rai, and L.J. Stal. 1997. N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev. 19, 139–185.CrossRefGoogle Scholar
  8. Burt, R. and E.B. Alexander. 1996. Soil development on moraines of Mendenhall Glacier, southeast Alaska.2. Chemical transformations and soil micromorphology. Geoderma 72, 19–36.CrossRefGoogle Scholar
  9. Chapin, F.S., L.R. Walker, C.L. Fastie, and L.C. Sharman. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 64, 149–175.CrossRefGoogle Scholar
  10. Chin, C.C. and G. Gorin. 1966. Urease.7. Some observations on assay method of Sumner. Anal. Biochem. 17, 60–65.CrossRefPubMedGoogle Scholar
  11. Cleveland, C.C. and D. Liptzin. 2007. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252.CrossRefGoogle Scholar
  12. Crocker, R.L. and B.A. Dickson. 1957. Soil development on the recessional moraines of the Herbert and Mendenhall Glaciers, Southeastern Alaska. J. Ecol. 45, 169–185.CrossRefGoogle Scholar
  13. Cross, A.F. and W.H. Schlesinger. 1995. A literature review and evaluation of the Hedley Fractionation — Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64, 197–214.CrossRefGoogle Scholar
  14. Deiglmayr, K., L. Philippot, D. Tscherko, and E. Kandeler. 2006. Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environ. Microbiol. 8, 1600–1612.CrossRefPubMedGoogle Scholar
  15. Del Moral, R., J.H. Titus, and A.M. Cook. 1995. Early primary succession on Mount St-Helens, Washington, USA. J. Veg. Sci. 6, 107–120.CrossRefGoogle Scholar
  16. DeSantis, T.Z., P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G.L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.CrossRefPubMedGoogle Scholar
  17. Duc, L., M. Noll, B.E. Meier, H. Burgmann, and J. Zeyer. 2009. High diversity of diazotrophs in the forefield of a receding alpine glacier. Microb. Ecol. 57, 179–190.CrossRefPubMedGoogle Scholar
  18. Hammerli, A., S. Waldhuber, C. Miniaci, J. Zeyer, and M. Bunge. 2007. Local expansion and selection of soil bacteria in a glacier forefield. Eur. J. Soil Sci. 58, 1437–1445.CrossRefGoogle Scholar
  19. Hardy, R.W.F., R.D. Holsten, E.K. Jackson, and R.C. Burns. 1968. Acetylene-ethylene assay for N2 fixation — laboratory and field evaluation. Plant Physiol. 43, 1185–1207.CrossRefPubMedGoogle Scholar
  20. Hodkinson, I.D., S.J. Coulson, J. Harrison, and N.R. Webb. 2001. What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the high Arctic — some counter-intuitive ideas on community assembly. Oikos 95, 349–352.CrossRefGoogle Scholar
  21. Hodkinson, I.D., N.R. Webb, and S.J. Coulson. 2002. Primary community assembly on land — the missing stages: why are the heterotrophic organisms always there first? J. Ecol. 90, 569–577.CrossRefGoogle Scholar
  22. Huber, T., G. Faulkner, and P. Hugenholtz. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20, 2317–2319.CrossRefPubMedGoogle Scholar
  23. Jones, M.L.M., A. Sowerby, D.L. Williams, and R.E. Jones. 2008. Factors controlling soil development in sand dunes: evidence from a coastal dune soil chronosequence. Plant Soil 307, 219–234.CrossRefGoogle Scholar
  24. Kandeler, E., K. Deiglmayr, D. Tscherko, D. Bru, and L. Philippot. 2006. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 72, 5957–5962.CrossRefPubMedGoogle Scholar
  25. Kastovska, K., J. Elster, M. Stibal, and H. Santruckova. 2005. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic). Microb. Ecol. 50, 396–407.CrossRefPubMedGoogle Scholar
  26. King, A.J., A.F. Meyer, and S.K. Schmidt. 2008. High levels of microbial biomass and activity in unvegetated tropical and temperate alpine soils. Soil Biol. Biochem. 40, 2605–2610.CrossRefGoogle Scholar
  27. Krebs, C.J. 2001. Ecology: the experimental analysis of distribution and abundance. Benjamin Cummings, San Francisco, USA.Google Scholar
  28. Kuo, S. 1996. Phosphorus, p. 869–919. In D.L. Sparks (ed.), Methods of Soil Analysis. Soil Science Society of America, Inc., Madison, Wisconsin, USA.Google Scholar
  29. Lane, D.J. 1991. 16S/23S rRNA Sequencing, p. 115–175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons Ltd, West Sussex, USA.Google Scholar
  30. Ley, R.E., M. Hamady, C. Lozupone, P.J. Turnbaugh, R.R. Ramey, J.S. Bircher, M.L. Schlegel, T.A. Tucker, M.D. Schrenzel, R. Knight, and J.I. Gordon. 2008. Evolution of mammals and their gut microbes. Science 320, 1647–1651.CrossRefPubMedGoogle Scholar
  31. Lozupone, C., M. Hamady, and R. Knight. 2006. UniFrac — An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7.Google Scholar
  32. Martin, A.P. 2002. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68, 3673–3682.CrossRefPubMedGoogle Scholar
  33. Motyka, R.J., S. O’Neel, C.L. Connor, and K.A. Echelmeyer. 2003. Twentieth century thinning of Mendenhall Glacier, Alaska, and its relationship to climate, lake calving, and glacier run-off. Global Planet Change 35, 93–112.CrossRefGoogle Scholar
  34. Nemergut, D.R., S.P. Anderson, C.C. Cleveland, A.P. Martin, A.E. Miller, A. Seimon, and S.K. Schmidt. 2007. Microbial community succession in an unvegetated, recently deglaciated soil. Microb. Ecol. 53, 110–122.CrossRefPubMedGoogle Scholar
  35. Nemergut, D.R., E.K. Costello, A.F. Meyer, M.Y. Pescador, M.N. Weintraub, and S.K. Schmidt. 2005. Structure and function of alpine and arctic soil microbial communities. Res. Microbiol. 156, 775–784.CrossRefPubMedGoogle Scholar
  36. Nemergut, D.R., A.R. Townsend, S.R. Sattin, K.R. Freeman, N. Fierer, J.C. Neff, W.D. Bowman, C.W. Schadt, M.N. Weintraub, and S.K. Schmidt. 2008. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ. Microbiol. 10, 3093–3105.CrossRefPubMedGoogle Scholar
  37. Nicol, G.W., D. Tscherko, T.M. Embley, and J.I. Prosser. 2005. Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ. Microbiol. 7, 337–347.CrossRefPubMedGoogle Scholar
  38. Noll, M. and M. Wellinger. 2008. Changes of the soil ecosystem along a receding glacier: Testing the correlation between environmental factors and bacterial community structure. Soil Biol. Biochem. 40, 2611–2619.CrossRefGoogle Scholar
  39. Ohtonen, R., H. Fritze, T. Pennanen, A. Jumpponen, and J. Trappe. 1999. Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119, 239–246.CrossRefGoogle Scholar
  40. Reed, S.C., C.C. Cleveland, and A.R. Townsend. 2007. Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests. Biotropica 39, 585–592.CrossRefGoogle Scholar
  41. Saiya-Cork, K.R., R.L. Sinsabaugh, and D.R. Zak. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315.CrossRefGoogle Scholar
  42. Schipper, L.A., B.P. Degens, G.P. Sparling, and L.C. Duncan. 2001. Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol. Biochem. 33, 2093–2103.CrossRefGoogle Scholar
  43. Schloss, P.D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 1501–1506.Google Scholar
  44. Schmidt, S.K., E.K. Costello, D.R. Nemergut, C.C. Cleveland, S.C. Reed, M.N. Weintraub, A.F. Meyer, and A.M. Martin. 2007. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88, 1379–1385.CrossRefPubMedGoogle Scholar
  45. Schmidt, S.K., S.C. Reed, D.R. Nemergut, A.S. Grandy, C.C. Cleveland, M.N. Weintraub, A.W. Hill, E.K. Costello, A.F. Meyer, J.C. Neff, and A.M. Martin. 2008. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. P. Roy. Soc. B-Biol. Sci. 275, 2793–2802.CrossRefGoogle Scholar
  46. Sigler, W.V., S. Crivii, and J. Zeyer. 2002. Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb. Ecol. 44, 306–316.CrossRefPubMedGoogle Scholar
  47. Sigler, W.V. and J. Zeyer. 2002. Microbial diversity and activity along the forefields of two receding glaciers. Microb. Ecol. 43, 397–407.CrossRefPubMedGoogle Scholar
  48. Sprent, J.I. and J.A. Raven. 1985. Evolution of nitrogen fixing symbioses. Proc. R. Soc. Edin. B 85, 215–237.Google Scholar
  49. Swofford, D.L. 2001. Phylogenetic Analysis Using Parsimony (*and Other Methods), 4th ed. Sinauer Associates, Sunderland, MA, USA.Google Scholar
  50. Tiessen, H. and J.O. Moir. 1993. Characterization of available P by sequential extraction, p. 75–86. In M.R. Carter (ed.), Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  51. Tscherko, D., U. Hammesfahr, M.C. Marx, and E. Kandeler. 2004. Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol. Biochem. 36, 1685–1698.CrossRefGoogle Scholar
  52. Tscherko, D., U. Hammesfahr, G. Zeltner, E. Kandeler, and R. Bocker. 2005. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl. Ecol. 6, 367–383.CrossRefGoogle Scholar
  53. Tscherko, D., J. Rustemeier, A. Richter, W. Wanek, and E. Kandeler. 2003. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur. J. Soil Sci. 54, 685–696.CrossRefGoogle Scholar
  54. Vitousek, P.M. 2004. Hawai’i as a Model System. Princeton University Press, Princeton, NJ, USA.Google Scholar
  55. Weintraub, M.N., L.E. Scott-Denton, S.K. Schmidt, and R.K. Monson. 2007. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154, 327–338.CrossRefPubMedGoogle Scholar
  56. White, C.C., M.S. Cresser, and S.J. Langan. 1996. The importance of marine-derived base cations and sulphur in estimating critical loads in Scotland. Sci. Total Environ. 177, 225–236.CrossRefGoogle Scholar
  57. Xie, C.H. and A. Yokota. 2006. Zoogloea oryzae sp. nov., a nitrogen-fixing bacterium isolated from rice paddy soil, and reclassification of the strain ATCC 19623 as Crabtreella saccharophila gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 56, 619–624.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sarah R. Sattin
    • 1
    • 2
  • Cory C. Cleveland
    • 3
  • Eran Hood
    • 4
  • Sasha C. Reed
    • 3
  • Andrew J. King
    • 1
  • Steven K. Schmidt
    • 1
  • Michael S. Robeson
    • 1
  • Nataly Ascarrunz
    • 1
    • 2
  • Diana R. Nemergut
    • 2
    • 5
    Email author
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  2. 2.Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  3. 3.Department of Ecosystem and Conservation SciencesUniversity of MontanaMissoulaUSA
  4. 4.Environmental Sciences ProgramUniversity of Alaska SoutheastJuneauUSA
  5. 5.Environmental Studies ProgramUniversity of ColoradoBoulderUSA

Personalised recommendations