The Journal of Microbiology

, Volume 47, Issue 6, pp 774–782 | Cite as

Biochemical characteristics of immune-associated phospholipase A2 and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila

  • Sony Shrestha
  • Yonggyun KimEmail author


An entomopathogenic bacterium, Xenorhabdus nematophila, induces an immunosuppression of target insects by inhibiting phospholipase A2 (PLA2) activity. Recently, an immune-associated PLA2 gene was identified from the red flour beetle, Tribolium castaneum. This study cloned this PLA2 gene in a bacterial expression vector to produce a recombinant enzyme. The recombinant T. castaneum PLA2 (TcPLA2) exhibited its characteristic enzyme activity with substrate concentration, pH, and ambient temperature. Its biochemical characteristics matched to a secretory type of PLA2 (sPLA2) because its activity was inhibited by dithiothreitol (a reducing agent of disulfide bond) and bromophenacyl bromide (a specific sPLA2 inhibitor) but not by methylarachidonyl fluorophosphonate (a specific cytosolic type of PLA2). The X. nematophila culture broth contained PLA2 inhibitory factor(s), which was most abundant in the media obtained at a stationary bacterial growth phase. The PLA2 inhibitory factor(s) was heat-resistant and extracted in both aqueous and organic fractions. Effect of a PLA2-inhibitory fraction on the immunosuppression of T. castaneum was equally comparable with that resulted from inhibition of the TcPLA2 gene expression by RNA interference.


X. nematophila phospholipase A2 T. castaneum immunosuppression RNA interference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhurst, R.J. 1982. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J. Gen. Microbiol. 128, 3061–3065.PubMedGoogle Scholar
  2. Boemare, N., A. Givaudan, M. Brehelin, and C. Laumond. 1997. Symbiosis and pathogenicity of nematode-bacterium complexes. Symbiosis 22, 21–45.Google Scholar
  3. Bonneton, F., A. Chaumot, and V. Laudet. 2008. Annotation of Tribolium nuclear receptors reveals an increase in evolutionary rate of a network controlling the ecdysone cascade. Insect Biochem. Mol. Biol. 38, 416–429.CrossRefPubMedGoogle Scholar
  4. Burke, J.E. and E.A. Dennis. 2009. Phospholipase A2 structure/function, mechanism and signaling. J. Lipid Res. 50, S237–S242.CrossRefPubMedGoogle Scholar
  5. Dunphy, G.B. and J.M. Webster. 1988. Interaction of Xenorhabdus nematophilus subsp. Nematophilus with the haemo lymph of Galleria mellonella. Int. J. Parasitol. 30, 883–889.Google Scholar
  6. Dunphy, G.B. and J.M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. Dutki and their modification by serum of non-immune larvae of Galleria mellonella. J. Invertebr. Pathol. 58, 40–51.CrossRefGoogle Scholar
  7. Eleftherianos, I., P.J. Milichap, R.H. ffrench-Constant, and S.E. Reynolds. 2006. RNAi suppression of recognition protein mediated immune response in tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Dev. Comp. Immunol. 30, 1099–1107.CrossRefPubMedGoogle Scholar
  8. Gadelhak, G.G., V.K. Pedibhotla, and D.W. Stanley-Samuelson. 1995. Eicosanoid biosynthesis by hemocytes from tobacco horn-worm, Manduca sexta. Insect Biochem. Mol. Biol. 25, 743–749.CrossRefPubMedGoogle Scholar
  9. Gillespie, J.P., M.R. Kanost, and T. Trenczek. 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611–643.CrossRefPubMedGoogle Scholar
  10. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek, and Y. Kim. 2004. Identification of an antibacterial compound, benzy-lideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239, 241–248.CrossRefPubMedGoogle Scholar
  11. Kaya, H.K. 1990. Soil Ecology, p. 215–231. In R. Gaugler and H.K. Kaya (eds.) Entomopathogenic nematodes in biological control. CRC, Boca Raton, Florida, USA.Google Scholar
  12. Khandelwal, P. and N. Benerjee-Bhatnagar. 2003. Insecticidal activity associated with the outer membrane vesicles of Xenorhabdus nematophila. Appl. Environ. Microbiol. 69, 2032–2037.CrossRefPubMedGoogle Scholar
  13. Kim, Y., D. Ji, S. Cho, and Y. Park. 2005. Two groups of ento-mopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. Arch. Insect Biochem. Physiol. 59, 230–244.CrossRefPubMedGoogle Scholar
  14. Kuchler, K., M. Gmachl, M.J. Sippl, and G. Kreil. 1989. Analysis of the cDNA for phospholipase A2 from honeybee venom glands. The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur. J. Biochem. 184, 249–254.CrossRefPubMedGoogle Scholar
  15. Kwon, H.S., D.W. Stanley, and J.S. Miller. 2007. Bacterial challenge and eicosanoid act in plasmatocyte spreading. Entomol. Exp. Appl. 124, 285–292.CrossRefGoogle Scholar
  16. Lavine, M.D. and M.R. Strand. 2002. Insect hemocytes and their roles in immunity. Insect Biochem. Mol. Biol. 32, 1295–1309.CrossRefPubMedGoogle Scholar
  17. McInerney, B.V., R.P. Gregson, M.J. Lacey, R.J. Akhurst, G.R. Lyons, S.H. Rhodes, D.R.J. Smith, L.M. Engelhardt, and A.H. White. 1991. Biologically active metabolites from Xenorhabdus spp. Part 2. Benzopyran-1-one derivatives with gastroprotec-tive activity. J. Nat. Prod. 54, 785–795.CrossRefPubMedGoogle Scholar
  18. Morgan, J.A.W., M. Sergent, D. Ellis, M. Ousley, and P. Jarrentt. 2001. Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMF1296. Appl. Environ. Microbiol. 67, 2062–2069.CrossRefPubMedGoogle Scholar
  19. Morishima, I., Y. Yamano, K. Inoue, and N. Matsuo. 1997. Eicosa-noids mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Lett. 419, 83–86.CrossRefPubMedGoogle Scholar
  20. Park, Y., J. Aikins, L.J. Wang, R.W. Beeman, B. Oppert, J.C. Lord, S.J. Brown, M.D. Lorenzen, S. Richards, G.M. Weinstock, and R.A. Gibbs. 2008. Analysis of transcriptome data in the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 380–386.CrossRefPubMedGoogle Scholar
  21. Park, Y., A.R.N. Aliza, and A. Stanley. 2005. A secretory PLA2 associated with tobacco hornworm hemocyte membrane preparations acts in cellular immune reactions. Arch. Insect Biochem. Physiol. 60, 105–115.CrossRefPubMedGoogle Scholar
  22. Park, Y., E.E. Herbert, C.E. Cowles, K.N. Cowles, M.L. Menard, S.S. Orchard, and H. Goodrich-Blair. 2006. Clonal variation in Xenorhabdus nematophila virulence and suppression of Manduca sexta immunity. Cell Microbiol. 9, 645–656.CrossRefPubMedGoogle Scholar
  23. Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469–1476.CrossRefPubMedGoogle Scholar
  24. Park, Y. and Y. Kim. 2003. Xenorhabdus nematophila inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54, 134–142.CrossRefPubMedGoogle Scholar
  25. Park, Y., Y. Kim, H. Tunaz, and D.W. Stanley. 2004. An entomo-pathogenic bacteria, Xenorhabdus nematophila, inhibits hemo-cytic phospholipase A2 (PLA2) in tobacco hornworm, Manduca sexta. J. Invertebr. Pathol. 86, 65–71.CrossRefPubMedGoogle Scholar
  26. Paul, V.J., S. Frautschy, W. Fenical, and K.H. Nealson. 1981. Antibiotics in microbial ecology, isolation and structure assignment of several new antibacterial compounds from the insect-symbiotic bacteria Xenorhabdus spp. J. Chem. Ecol. 7, 589–597.CrossRefGoogle Scholar
  27. Radvanyi, F., L. Jordan, F. Russo-Marie, and C. Bon. 1989. A sensitive and continuous fluorometric assay for phospholipase A2 using pyrene-labeled phospholipids in the presence of serum albumin. Annu. Biochem. 177, 103–109.CrossRefGoogle Scholar
  28. Ratcliffe, N.A., J.L. Brookman, and J.F. Rowley. 1991. Activation of the phonoloxidase cascade and initiation of nodule formation in locust by bacterial polysaccharides. Dev. Comp. Immunol. 5, 33–40.CrossRefGoogle Scholar
  29. Ryu, Y., Y. Oh, J. Yoon, W. Cho, and K. Baek. 2003. Molecular characterization of a gene encoding the Drosophila melanogaster phospholipase A2. Biochem. Biophys. Acta 31, 4654–4662.Google Scholar
  30. SAS Institute, Inc. 1989. SAS/STAT User’s Guide, release 6.03 ed. SAS Institute, Cary, NC, USA.Google Scholar
  31. Schaloske, R.H. and E.A. Dennis. 2006. The phospholipase A2 superfamily and its group numbering system. Biochem. Biophys. Acta 1761, 1246–1259.PubMedGoogle Scholar
  32. Schröder, R. 2003. The genes orthodenticle and hunchback substitute for bicodal in the beetle, Tribolium. Nature 422, 621–625.CrossRefGoogle Scholar
  33. Sergent, M., P. Jarett, M. Ousley, and J.A.W. Morgan. 2003. Interactions of insecticidal toxin gene products from Xenorhabdus nematophila PMF1296. Appl. Environ. Microbiol. 69, 3344–3349.CrossRefGoogle Scholar
  34. Shrestha, S. 2008. MS thesis. Andong National University, Andong, Korea.Google Scholar
  35. Shrestha, S. and Y. Kim. 2007a. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase A2. J. Invertebr. Pathol. 96, 64–70.CrossRefPubMedGoogle Scholar
  36. Shrestha, S. and Y. Kim. 2007b. Factors affecting the activation of hemolymph prophenoloxidase of Spodoptera exigua (Lepidop-tera: Noctuidae). J. Asia-Pacific Entomol. 10, 131–135.CrossRefGoogle Scholar
  37. Shrestha, S. and Y. Kim. 2008. Eicosanoid mediates prophenolox-idase release from oenocytoids in the beet armyworm, Spodop-tera exigua. Insect Biochem. Mol. Biol. 38, 99–112.CrossRefPubMedGoogle Scholar
  38. Stanley, D.W. 2005. Eicosanoids, p. 307–339. In L.I. Gilbert, K. Latrou, and S. Gill (eds.). Comprehensive Molecular Insect Science. 4th ed. Elsevier, Oxford, UK.Google Scholar
  39. Stanley, D.W. 2006a. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51, 25–44.CrossRefPubMedGoogle Scholar
  40. Stanley, D.W. 2006b. The non-venom insect phospholipase A2. Biochem. Biophys. Acta 1761, 1383–1390.PubMedGoogle Scholar
  41. Stanley, D.W., W. W. Hoback, J.C. Bedick, H. Tunaz, R.L. Rana, A.R.N. Aliza, and J.S. Miller. 1999. Eicosanoid mediate nodu-lation reactions to bacterial infections in larvae of the butterfly, Colias eurytheme. Comp. Biochem. Physiol. C 123, 217–223.PubMedGoogle Scholar
  42. Stanley-Samuelson, D.W. and C.L. Ogg. 1994. Prostaglandin biosynthesis by fat body from the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 24, 481–491.CrossRefPubMedGoogle Scholar
  43. Sundar, L. and F.N. Chang. 1993. Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nemato-philus. J. Gen. Microbiol. 129, 3139–3149.Google Scholar
  44. Tan, A. and S.R. Palli. 2008. Identification and characterization of nuclear receptors from the red flour beetle, Tribolium cas-taneum. Insect Biochem. Mol. Biol. 38, 430–439.CrossRefPubMedGoogle Scholar
  45. Tribolium Genome Sequencing Consortium. 2008. The genome of the model beetle and pest Tribolium castaneum. Nature 452, 949–955.CrossRefGoogle Scholar
  46. Vivas, E.I. and H. Goodrich-Blair. 2001. Xenorhabdus nematophilus as a model for host-bacterium interactions: rpoS is necessary for mutualism with nematodes. J. Bacteriol. 183, 4687–4693.CrossRefPubMedGoogle Scholar
  47. Yajima, M., M. Takada, N. Takahashi, H. Kikuchi, S. Natori, Y. Oshima, and S. Kurata. 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (Imd) pathway in insect immunity. J. Biochem. 371, 205–210.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Bioresource SciencesAndong National UniversityAndongRepublic of Korea

Personalised recommendations