The Journal of Microbiology

, Volume 47, Issue 3, pp 337–343 | Cite as

Nup211, the fission yeast homolog of Mlp1/Tpr, is involved in mRNA export

  • Jin-Ah Bae
  • DongGeRaMi Moon
  • Jin Ho YoonEmail author


Synthetic lethal mutants have been previously isolated in fission yeast Schizosaccharomyces pombe, which genetically interact with spmex67, in order to identify the genes involved in mRNA export. The nup211 gene was isolated by complementation of the growth defect in one of the synthetic lethal mutants, SLMex2, under synthetic lethal condition. We showed that Nup211, fission yeast homolog of Mlpl/Mlp2/Tpr, is essential for vegetative growth and Nup211-GFP proteins expressed at endogenous level are localized mainly in nuclear periphery. The accumulation of poly(A)+ RNA in the nucleus is exhibited when expression of nup211 is repressed or over-expressed. These results suggest that the Nup211 protein plays a pivotal role of mRNA export in fission yeast.


mRNA export Schizosaccharomyces pombe nup211 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfa, C., P. Fantes, J. Hyams, M. Mcleod, and E. Warbrick. 1993. Experiments with Fission Yeast. Cold Spring Harbor, Cold Spring Harbor Laboratory, New York, N.Y., USA.Google Scholar
  2. Bangs, P., B. Burke, C. Powers, R. Craig, A. Purohit, and S. Doxsey. 1998. Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J. Cell Biol. 143, 1801–1812.PubMedCrossRefGoogle Scholar
  3. Barbet, N., W.J. Muriel, and A.M. Carr. 1992. Versatile shuttle vectors and genomic libraries for use with Schizosaccharomyces pombe. Gene 114, 59–66.PubMedCrossRefGoogle Scholar
  4. Basi, G., E. Schmid, and K. Maundrell. 1993. TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123, 131–136.PubMedCrossRefGoogle Scholar
  5. Brown, J.A., A. Bharathi, A. Ghosh, W. Whalen, E. Fitzgerald, and R. Dhar. 1995. A mutation in the Schizosaccharomyces pombe rae1 gene causes defects in poly(A)+ RNA export and in the cytoskeleton. J. Biol. Chem. 270, 7411–7419.PubMedCrossRefGoogle Scholar
  6. Chen, X.Q., X. Du, J. Liu, M.K. Balasubramanian, and D. Balasundaram. 2004. Identification of genes encoding putative nucleoporins and transport factors in the fission yeast Schizosaccharomyces pombe: a deletion analysis. Yeast 21, 495–509.PubMedCrossRefGoogle Scholar
  7. Cho, H.J., D.K. Hwang, S.I. Jung, and J.H. Yoon. 2007. Schizosaccharomyces pombe nup97, which genetically interacts with mex67, is essential for growth and involved in mRNA export. J. Microbiol. 45, 344–349.PubMedGoogle Scholar
  8. Cole, C.N. and J.J. Scarcelli. 2006. Unravelling mRNA export. Nat. Cell Biol. 8, 645–647.PubMedCrossRefGoogle Scholar
  9. Craven, R.A., D.J. Griffiths, K.S. Sheldrick, R.E. Randall, I.M. Hagan, and A.M. Carr. 1998. Vectors for the expression of tagged proteins in Schizosaccharomyces pombe. Gene 221, 59–68.PubMedCrossRefGoogle Scholar
  10. Erkmann, J.A. and U. Kutay. 2004. Nuclear export of mRNA: from the site of transcription to the cytoplasm. Exp. Cell Res. 296, 12–20.PubMedCrossRefGoogle Scholar
  11. Fasken, M.B., M. Stewart, and A.H. Corbett. 2008. Functional significance of the interaction between the mRNA-binding protein, Nab2, and the nuclear pore-associated protein, Mlp1, in mRNA export. J. Biol. Chem. 283, 27130–27143.PubMedCrossRefGoogle Scholar
  12. Fischer, T., K. Strässer, A. Rácz, S. Rodriguez-Navarro, M. Oppizzi, P. Ihrig, J. Lechner, and E. Hurt. 2002. The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 21, 5843–5852.PubMedCrossRefGoogle Scholar
  13. Forsburg, S.L. 1993. Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res. 21, 2955–2956.PubMedCrossRefGoogle Scholar
  14. Frosst, P., T. Guan, C. Subauste, K. Hahn, and L. Gerace. 2002. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J. Cell Biol. 156, 617–630.PubMedCrossRefGoogle Scholar
  15. Galy, V., O. Gadal, M. Fromont-Racine, A. Romano, A. Jacquier, and U. Nehrbass. 2004. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73.PubMedCrossRefGoogle Scholar
  16. Galy, V., J.C. Olivo-Marin, H. Scherthan, V. Doye, N. Rascalou, and U. Nehrbass. 2000. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403, 108–112.PubMedCrossRefGoogle Scholar
  17. Gilbert, W. and C. Guthrie. 2004. The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol. Cell 13, 201–212.PubMedCrossRefGoogle Scholar
  18. Green, D.M., C.P. Johnson, H. Hagan, and A.H. Corbett. 2003. The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc. Natl. Acad. Sci. USA 100, 1010–1015.PubMedCrossRefGoogle Scholar
  19. Green, D.M., K.A. Marfatia, E.B. Crafton, X. Zhang, X. Cheng, and A.H. Corbett. 2002. Nab2p is required for poly(A) RNA export in Saccharomyces cerevisiae and is regulated by arginine methylation via Hmt1p. J. Biol. Chem. 277, 7752–7760.PubMedCrossRefGoogle Scholar
  20. Grüter, P., C. Tabernero, C. Von Kobbe, C. Schmitt, C. Saavedra, A. Bachi, M. Wilm, B.K. Felber, and E. Izaurralde. 1998. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1, 649–659.PubMedCrossRefGoogle Scholar
  21. Hase, M.E. and V.C. Cordes. 2003. Direct interaction with Nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol. Biol. Cell. 14, 1923–1940.PubMedCrossRefGoogle Scholar
  22. Köhler, A. and E. Hurt. 2007. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761–773.PubMedCrossRefGoogle Scholar
  23. Kosova, B., N. Pante, C. Rollenhagen, A. Podtelejnikov, M. Mann, U. Aebi, and E. Hurt. 2000. Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with nic96p. J. Biol. Chem. 275, 343–350.PubMedCrossRefGoogle Scholar
  24. Kozak, L., G. Gopal, J.H. Yoon, Z.E. Sauna, S.V. Ambudkar, A.G. Thakurta, and R. Dhar. 2002. Elf1p, a member of the ABC class of ATPases, functions as a mRNA export factor in Schizosacchromyces pombe. J. Biol. Chem. 277, 33580–33589.PubMedCrossRefGoogle Scholar
  25. Krull, S., J. Thyberg, B. Björkroth, H.R. Rackwitz, and V.C. Cordes. 2004. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 15, 4261–4277.PubMedCrossRefGoogle Scholar
  26. Matsumoto, T. and D. Beach. 1991. Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase. Cell 66, 347–360.PubMedCrossRefGoogle Scholar
  27. Maundrell, K. 1993. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123, 127–130.PubMedCrossRefGoogle Scholar
  28. Moreno, S., A. Klar, and P. Nurse. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823.PubMedCrossRefGoogle Scholar
  29. Niepel, M., C. Strambio-de-Castillia, J. Fasolo, B.T. Chait, and M.P. Rout. 2005. The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. J. Cell Biol. 170, 225–235.PubMedCrossRefGoogle Scholar
  30. Reed, R. and E. Hurt. 2002. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523–531.PubMedCrossRefGoogle Scholar
  31. Rodriguez, M.S., C. Dargemont, and F. Stutz. 2004. Nuclear export of RNA. Biol. Cell 96, 639–655.PubMedCrossRefGoogle Scholar
  32. Saguez, C., J.R. Olesen, and T.H. Jensen. 2005. Formation of export-competent mRNP: escaping nuclear destruction. Curr. Opin. Cell Biol. 17, 287–293.PubMedCrossRefGoogle Scholar
  33. Segref, A., K. Sharma, V. Doye, A. Hellwig, J. Huber, R. Luhrmann, and E. Hurt. 1997. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 16, 3256–3271.PubMedCrossRefGoogle Scholar
  34. Strambio-de-Castillia, C., G. Blobel, and M.P. Rout. 1999. Proteins connecting the nuclear pore complex with the nuclear interior. J. Cell Biol. 144, 839–855.PubMedCrossRefGoogle Scholar
  35. Strässer, K. and E. Hurt. 2000. Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J. 18, 2593–2609.Google Scholar
  36. Thakurta, A.G., G. Gopal, J.H. Yoon, L. Kozak, and R. Dhar. 2005. Homolog of BRCA2-interacting Dss1p and Uap56p link Mlo3p and Rae1p for mRNA export in fission yeast. EMBO J. 24, 2512–2523.PubMedCrossRefGoogle Scholar
  37. Tran, E.J. and S.R. Wente. 2006. Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053.PubMedCrossRefGoogle Scholar
  38. Vinciguerra, P., N. Iglesias, J. Camblong, D. Zenklusen, and F. Stutz. 2005. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J. 24, 813–823PubMedCrossRefGoogle Scholar
  39. Yoon, J.H. 2003. Synthetic lethal mutations with spmex67 of Schizosaccharomyces pombe in the mediation of mRNA export. J. Microbiol. 41, 115–120.Google Scholar
  40. Yoon, J.H. 2004. Schizosaccharomyces pombe rsm1 genetically interacts with spmex67, which is involved in mRNA export. J. Microbiol. 42, 32–36.PubMedGoogle Scholar
  41. Yoon, J.H., D.C. Love, A. Guhathakurta, J.A. Hanover, and R. Dhar. 2000. Mex67p of Schizosaccharomyces pombe interacts with Rae1p in mediating mRNA export. Mol. Cell. Biol. 20, 8767–8782.PubMedCrossRefGoogle Scholar
  42. Yoon, J.H., W.A. Whalen, A. Bharathi, R. Shen, and R. Dhar. 1997. Npp106p, a Schizosaccharomyces pombe nucleoporin similar to Saccharomyces cerevisiae Nic96p, functionally interacts with Rae1p in mRNA export. Mol. Cell. Biol. 17, 7047–7060.PubMedGoogle Scholar
  43. Yu, J.H., Z. Hamari, K.H. Han, J.A. Seo, Y. Reyes-Domínguez, and C. Scazzocchio. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41, 973–981.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2009

Authors and Affiliations

  1. 1.Department of EducationSungshin Women’s UniversitySeoulRepublic of Korea
  2. 2.School of Biological Sciences and Chemistry, and Basic Sciences Research InstituteSungshin Women’s UniversitySeoulRepublic of Korea

Personalised recommendations