The Journal of Microbiology

, Volume 47, Issue 4, pp 393–401 | Cite as

Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR

  • Daniela Bulgari
  • Paola Casati
  • Lorenzo Brusetti
  • Fabio Quaglino
  • Milena Brasca
  • Daniele Daffonchio
  • Piero Attilio Bianco


Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with γ-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.


Vitis vinifera L. plant endophytes 16S rRNA gene length heterogeneity-PCR bacterial enrichment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araujo, W.L., J. Marcon, W. Maccheroni, J.D. van Elsas, Jr., J.W.L. van Vuurde, and J.L. Azevedo. 2002. Diversità of endophytic bacterial populations and their interaction with Xylella fastidiosa citrus plants. Appl. Environ. Microbiol. 68, 4906–4914.PubMedCrossRefGoogle Scholar
  2. Bell, C.R., G.A. Dickie, W.L.G. Harvey, and J.W.Y.F. Chan. 1994. Endophytic bacteria in grapevine. Can. J. Microbiol. 41, 46–53.Google Scholar
  3. Ben-Dov, E., O.H. Shapiro, N. Siboni, and A. Kushmaro. 2006. Advantage of using inosine at the 3′ terminal of 16S rRNA gene universal primers for the study of microbial diversity. Appl. Environ. Microbiol. 72, 6902–6909.PubMedCrossRefGoogle Scholar
  4. Berg, G., A. Krechel, M. Ditz, R. Sikora, A. Ulrich, and J. Hallman. 2005. Endophytic and ectophytic potato-associted bacterial commmunities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51, 215–229.PubMedCrossRefGoogle Scholar
  5. Bonaterra, A., M. Mari, L. Casalini, and E. Montesinos. 2003. Biological control of Monilinia laxa and Rizophus stolonifer in postharvest of stone fruit by Pantoea agglomerans EPS125 and putative mechanisms of antagonism. Int. J. Food Microbiol. 84, 93–104.PubMedGoogle Scholar
  6. Brooks, D.S., C.F. Gonzalez, D.N. Appel, and T.H. Filer. 1994. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol. Control. 4, 373–381.CrossRefGoogle Scholar
  7. Brusetti, L., S. Borin, D. Mora, A. Rizzi, N. Raddadi, C. Sorlini, and D. Daffonchio. 2006. Usefulness of length heterogeneity-PCR for monitoring lactic acid bacteria succession during maize ensiling. FEMS Microbiol. Ecol. 56, 154–164.PubMedCrossRefGoogle Scholar
  8. Cankar, K., H. Kraigher, M. Ravinkar, and K.M. Rupnik. 2005. Bacterial endophytes from seeds of Norway spruce (Picea albis L. Karst). FEMS Microbiol. Lett. 244, 341–345.PubMedCrossRefGoogle Scholar
  9. Chelius, M.K. and E.W. Triplett. 2001. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41, 252–263.PubMedGoogle Scholar
  10. Conn, V. and C.M.M. Franco. 2004. Analysis of the endophytic actinobacterial population in roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl. Environ. Microbiol. 70, 1787–1794.PubMedCrossRefGoogle Scholar
  11. Curtis, T.P., W.T. Sloan, and J.W. Scannel. 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 99, 10494–10499.PubMedCrossRefGoogle Scholar
  12. Davis, R.E. and E.L. Dally. 2001. Revised subgroup classification of group 16SrV phytoplasmas and placement of Flavescence dorèe-associated phytoplasmas in two distinct subgroups. Plant Dis. 85, 790–797.CrossRefGoogle Scholar
  13. Deng, S. and C. Hiruki. 1991. Genetic relatedness between two non-culturable myciplasmalike organisms revealed by nucleic acid hybridyzation and polymerase chain reaction. Phytopathology 81, 1475–1479.CrossRefGoogle Scholar
  14. Dent, K.C., J.R. Stephen, and W.E. Finch-Savage. 2004. Molecular profiling of microbial community associated with seeds of Beta vulgaris subsp. vulgaris (Sugar beet). J. Microbiol. Methods 56, 17–26.PubMedCrossRefGoogle Scholar
  15. Dunbar, J., S. Takala, S.M. Barns, A.J. Davis, and C.R. Kuske. 1999. Levels of bacterial community diversity in four arid soil compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65, 1662–1669.PubMedGoogle Scholar
  16. Faoro, F. 2005. Why do grapevine phytoplasmas escape electron microscopists? Petria 15(1/2), 99–101.Google Scholar
  17. Ferreira, A., M.C. Quecine, P.T. Lacava, S. Oda, J.L. Azevedo, and W.L. Araujo. 2008. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol. Lett. 287, 8–14.PubMedCrossRefGoogle Scholar
  18. Frank, J.A., C.I. Reich, S. Sharma, J.S. Weisbaum, B.A. Wilson, and G.J. Olsen. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470.PubMedCrossRefGoogle Scholar
  19. Gray, E.J. and D.L. Smith. 2005. Intracellular and extracellular PGPR: commonalities and distinction in the plant bacterium signalling processes. Soil Biol. Biochem. 37, 395–412.CrossRefGoogle Scholar
  20. Gutierrez-Zamora, M.L. and E. Martínez-Romero. 2001. Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J. Biotechnol. 91, 117–126.PubMedCrossRefGoogle Scholar
  21. Haiwen, L., J. Luo, J.K. Hemphill, J.T. Wang, and J.H. Gould. 2001. A rapid and high yielding DNA Miniprep for cotton (Gossypium spp.). Plant Mol. Biol. Rep. 19, 183a–183e.CrossRefGoogle Scholar
  22. Hallmann, J., A. Quadt-Hallmann, W.F. Mahaffee, and J.W. Kloepper. 1997. Bacterial endophytes in agicolture crops. Can. J. Microbiol. 43, 895–914.Google Scholar
  23. Hengstmann, U., K.J. Chin, P.H. Janssen, and W. Liesack. 1999. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numericcaly abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol. 65, 5050–5058.PubMedGoogle Scholar
  24. Hurek, T., B. Reinhold-Hurek, M. Van Montagu, and E. Kellemberg. 1994. Root colonization and systemic spreeding of Azoarcus sp. strain BH72 in grasses. J. Bacteriol. 176, 1913–1923.PubMedGoogle Scholar
  25. Huws, S.A., J.E. Edwards, E.J. Kim, and N.D. Scollan. 2007. Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems, J. Microbiol. Methods 3, 565–569.CrossRefGoogle Scholar
  26. Idris, R., R. Trifonova, M. Puschenreitr, W.W. Wenzel, and A. Sessitch. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677.PubMedCrossRefGoogle Scholar
  27. Ishimaru, C.A.E., E. Klobs, and R.R. Brubaker. 1988. Multiple antibiotic production by Erwinia herbicola. Phytopatology 78, 746–750.CrossRefGoogle Scholar
  28. Jacobs, M.J., W.M. Bugbee, and D.A. Gabrielson. 1985. Enumeration, location and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot. 63, 1262–1265.Google Scholar
  29. Jensen, M.A., J.A. Webster, and N. Straus. 1993. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 59, 945–952.PubMedGoogle Scholar
  30. Jiao, J.Y., H.X. Wang, Y. Zeng, and Y.M. Shen. 2006. Enrichment for microbes living in association with plant tissues. J. Appl. Microbiol. 100, 830–837.PubMedCrossRefGoogle Scholar
  31. Kado, C.I. 1992. Plant pathogenic bacteria, p. 660–662. In A. Ballows, G.G. Truper, M. Dworkin, W. Harden, and K.H. Schleifer (eds.), The prokaryotes, Springerverlang, New York, N.Y., USA.Google Scholar
  32. Kaiser, O., A. Pühler, and W. Selbitschka. 2001. Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. Microb. Ecol. 42, 136–149.PubMedGoogle Scholar
  33. Kaul, S., M. Wani, K.L. Dhar, and M.K. Dhar. 2008. Production and GC-MS trace analysis of methyl eugenol from endophytic isolate of Alternaria from rose. Ann. Microbiol. 58, 443–446.Google Scholar
  34. Kumar S., J. Dudley, M. Nei, and K. Tamura. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9, 299–306.PubMedCrossRefGoogle Scholar
  35. Lane, D.J. 1991. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics, p. 133. Modern microbiological methods. In E. Stackebrandt and M. Goodfellow (eds.), J. Wiley & Sons, Chichester, UK.Google Scholar
  36. Lee, I.-M., D.E. Gundersen-Rindal, R. Davis, and I.M. Bartoszyk. 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48, 1153–1169.CrossRefGoogle Scholar
  37. Marzorati, M., A. Alma, L. Sacchi, M. Pajoro, S. Palermo, L. Brusetti, N. Raddadi, A. Balloi, R. Tedeschi, E. Clementi, S. Corona, F. Quaglino, P.A. Bianco, T. Beninati, C. Bandi, and D. Daffonchio. 2006. A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of Flavescence Dorée in Vitis vinifera. Appl. Environ. Microbiol. 72, 1467–1475.PubMedCrossRefGoogle Scholar
  38. Mills, D.K., J.A. Entry, P.M. Gillevet, and K. Mathee. 2007. Assessing microbial community diversity using amplicon length heterogeneity polymerase chain reaction. Soil Sci. Soc. Am. J. 71, 572–578.CrossRefGoogle Scholar
  39. Muyzer, G., S. Hottentrager, A. Teske, and C. Wawer. 1996. Denaturing gradient gel eletrophoresisfor PCR amplified 16s rRNA gene a new molecular approach to analyze the genetic diversity of mixed mcrobial communities, p. 1–23. In A.D.L. Akkermans, D.J. van Elsas, and F.J. Bruijin (eds.), Molecular Microbial Ecology Manual 3.4.4. Kluwer academic publisher, Dordrecht, The Netherlands.Google Scholar
  40. Ortmann, I., U. Conrath, and B.M. Moerschbacher. 2006. Exopolysaccharides of Pantoea agglomerans have different priming and eliciting activities in suspension-cultured cells of monocots and dicots. FEMS Lett. 580, 4491–4494.Google Scholar
  41. Prince, J.P., R.E. Davis, T.K. Wolf, I.M Lee, B.D. Mogen, E.L. Dally, A. Bartaccini, R. Credi, and M. Barba. 1993. Molecular detection of diverse mycoplasma like organisms (MLOs) associated with grapevine yellows and their classification with aster yellows MLOs. Phytopathology 83, 1130–1137.CrossRefGoogle Scholar
  42. Pusey, P.L., V.O. Stockwell, and D.R. Rudell. 2008. Antibiosis and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora. Phytopathology 98, 1136–1143.PubMedCrossRefGoogle Scholar
  43. Raupach, G.S. and J.W. Kloepper. 1998. Mixtures of plant-growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88, 1158–1164.PubMedCrossRefGoogle Scholar
  44. Raupach, G.S. and J.W. Kloepper. 2000. Biocontrol of cucumber diseases in the field by plant-growth promoting rhizobacteria with and without methyl bromide fumigation. Plant Dis. 84, 1073–1075.CrossRefGoogle Scholar
  45. Ritchie, N.J., M.E. Schutter, R.P. Dick, and D.D. Myrold. 2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl. Environ. Microbiol. 66, 1668–1675.PubMedCrossRefGoogle Scholar
  46. Schneider, B., E. Seemuller, C.D. Smart, and B.C. Kirkpatrick. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas, p. 369–380. In S. Razin and J.G. Tully (eds.), Molecular microbial and diagnostic procedures in mycoplasmology. Academic press, San Diego, USA.CrossRefGoogle Scholar
  47. Sessitsch, A., B. Reiter, U. Pfeifer, and E. Wilhelm. 2001. Analysis of endophytic bacteria in three potato cultivars. Abstr. 9th Meet. Int. Soc. Mol. Ecol., Abstr TU.052.Google Scholar
  48. Sessitsch, A., B. Reiter, U. Pfeifer, and E. Wilhelm. 2002. Cultivation-independent population of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol. Ecol. 39, 23–32.PubMedCrossRefGoogle Scholar
  49. Shuman, S. 1994. Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. J. Biol. Chem. 269, 32678–32684.PubMedGoogle Scholar
  50. Sun, L., F. Qiu, X. Zhang, X. Dai, X. Dong, and W. Song. 2008. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequences analysis. Microb. Ecol. 55, 415–424.PubMedCrossRefGoogle Scholar
  51. Taberlet, P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17, 1105–1109.PubMedCrossRefGoogle Scholar
  52. Taechowisan, T. and S. Lumyong. 2003. Activity of endophytic actimomycetes from roots of Zingiber officinale and Alpinia galanga against phytopathogenic fungi. Ann. Microbiol. 53, 291–298.Google Scholar
  53. Ulrich, K., A. Ulrich, and D. Ewald. 2008. Diversity of endophytic bacterial communities in poplar grown under field condition. FEMS Microbiol. Ecol. 63, 169–180.PubMedCrossRefGoogle Scholar
  54. Vega, F.E., M. Pava-Ripoll, F. Posada, and Y.S. Buyer. 2005. Endophytic bacteria in Coffea arabica L. J. Basic Microbiol. 45, 371–380.PubMedCrossRefGoogle Scholar
  55. Vidaver, A.K. 1982. The plant pathogenic corynebacteria. Annu. Rev. Microbiol. 36, 495–517.PubMedCrossRefGoogle Scholar
  56. Vorwerk, S., D. Martinez-Torres, and A. Forneck. 2007. Pantoea agglomerans-associated bacteria in grape phylloxera (Daktulosphaira vitifoliae, Fitch). Agr. Forest. Entomol. 9, 57–64.CrossRefGoogle Scholar
  57. Whitesides, S.K. and R.A. Spotts. 1991. Frequency, distribution, and characteristics of endophytic Pseudomonas syringe in pear trees. Phytopathology 81, 453–457.CrossRefGoogle Scholar
  58. Wilson, D. 1995. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73, 274–276.CrossRefGoogle Scholar
  59. Wright, S.A.I., C.H. Zumoff, L. Schneider, and S.V. Beer. 2001. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl. Environ. Microbiol. 67, 284–292.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Daniela Bulgari
    • 1
  • Paola Casati
    • 1
  • Lorenzo Brusetti
    • 2
  • Fabio Quaglino
    • 1
  • Milena Brasca
    • 3
  • Daniele Daffonchio
    • 4
  • Piero Attilio Bianco
    • 1
  1. 1.Dipartimento di Produzione Vegetale (Di.Pro.Ve.) — sez. Patologia VegetaleUniversità degli StudiMilanItaly
  2. 2.Facoltà di Scienze e TecnologieLibera Università di BolzanoBozenItaly
  3. 3.CNR — Istituto di Scienze delle Produzioni AlimentariMilanItaly
  4. 4.Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche (DISTAM)Università degli StudiMilanItaly

Personalised recommendations