The Journal of Microbiology

, Volume 48, Issue 1, pp 40–43 | Cite as

Potentiation of bacterial killing activity of zinc chloride by pyrrolidine dithiocarbamate

  • Eun-Kyoung Choi
  • Hye-Hyang Lee
  • Mi-Sun Kang
  • Byung-Gook Kim
  • Hoi-Soon Lim
  • Seon-Mi Kim
  • In-Chol Kang
Articles

Abstract

Zinc has antimicrobial activity and zinc salts including zinc chloride (ZnCl2) have been used for the control of oral malodor. In this study, we hypothesized that pyrrolidine dithiocarbamate (PDTC), a zinc ionophore, may enhance antimicrobial efficacy of ZnCl2. The bactericidal effectiveness of ZnCl2 alone (0.5–8 mM) or in combination with PDTC (1 or 10 μM) was evaluated by in vitro short (1 h) time-killing assays against Fusobacterium nucleatum and Porphyromonas gingivalis. Only a slight viability decrease was observed with ZnCl2 or PDTC alone after 1-h incubation. By contrast, combination of ZnCl2 and PDTC could achieve a more than 100-fold viability reduction compared with ZnCl2 or PDTC alone in F. nucleatum and P. gingivalis. Therefore, PDTC greatly enhanced the bactericidal activity of ZnCl2 against the oral malodor-producing bacteria. These results suggest that use of PDTC may be useful for enhancing bactericidal activity of antimalodor regimens of zinc salts.

Keywords

oral malodor zinc pyrrolidine dithiocarbamate bactericidal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Camps, M. and J.C. Boothroyd. 2001. Toxoplasma gondii: selective killing of extracellular parasites by oxidation using pyrrolidine dithiocarbamate. Exp. Parasitol. 98, 206–214.CrossRefPubMedGoogle Scholar
  2. Citron, D.M. and D.W. Hecht. 2003. Susceptibility test methods: anaerobic bacteria, pp. 1141–1148. In P.R. Murray, E.J. Baron, J.H. Jorgensen, M.A. Pfaller, and R.H. Yolken (eds.). Manual of Clinical Microbiology, 8th ed. ASM Press Washington, D.C., USA.Google Scholar
  3. Cuzzocrea, S., P.K. Chatterjee, E. Mazzon, L. Dugo, I. Serraino, D. Britti, G. Mazzullo, A.P. Caputi, and C. Thiemermann. 2002. Pyrrolidine dithiocarbamate attenuates the development of acute and chronic inflammation. Br. J. Pharmacol. 135, 496–510.CrossRefPubMedGoogle Scholar
  4. Delanghe, G., J. Ghyselen, C. Bollen, D. van Steenberghe, B.N. Vandekerckhove, and L. Feenstra. 1999. An inventory of patients’ response to treatment at a multidisciplinary breath odor clinic. Quintessence Int. 30, 307–310.PubMedGoogle Scholar
  5. He, G., E.I. Pearce, and C.H. Sissons. 2002. Inhibitory effect of ZnCl2 on glycolysis in human oral microbes. Arch. Oral Biol. 47, 117–129.CrossRefPubMedGoogle Scholar
  6. Kang, M.S., E.K. Choi, D.H. Choi, S.Y. Ryu, H.H. Lee, H.C. Kang, J.T. Koh, et al. 2008. Antibacterial activity of pyrrolidine dithiocarbamate. FEMS Microbiol. Lett. 280, 250–254.CrossRefPubMedGoogle Scholar
  7. Lauzurica, P., S. Martinez-Martinez, M. Marazuela, P. Gómez del Arco, C. Martinez, F. Sánchez-Madrid, and J.M. Redondo. 1999. Pyrrolidine dithiocarbamate protects mice from lethal shock induced by LPS or TNF-α. Eur. J. Immunol. 29, 1890–1900.CrossRefPubMedGoogle Scholar
  8. Loesche, W.J. and C. Kazor. 2002. Microbiology and treatment of halitosis. Periodontol. 2000 28, 256–279.CrossRefPubMedGoogle Scholar
  9. Mochizuki, T., H. Satsu, and M. Shimizu. 2005. Signaling pathways involved in tumor necrosis factor α-induced upregulation of the taurine transporter in Caco-2 cells. FEBS Lett. 579, 3069–3074.CrossRefPubMedGoogle Scholar
  10. Munoz, C., D. Pascual-Salcedo, M.C. Castellanos, A. Alfranca, J. Aragones, A. Vara, J.M. Redondo, and M.O. de Landazuri. 1996. Pyrrolidine dithiocarbamate inhibits the production of interleukin-6, interleukin-8, and granulocyte-macrophage colony-stimulating factor by human endothelial cells in response to inflammatory mediators: modulation of NF-κB and AP-1 transcription factors activity. Blood 88, 3482–3490.PubMedGoogle Scholar
  11. Nakano, Y., M. Yoshimura, and T. Koga. 2002. Correlation between oral malodor and periodontal bacteria. Microbes Infect. 4, 679–683.CrossRefPubMedGoogle Scholar
  12. Persson, S., R. Claesson, and J. Carlsson. 1989. The capacity of subgingival microbiotas to produce volatile sulfur compounds in human serum. Oral Microbiol. Immunol. 4, 169–172.CrossRefPubMedGoogle Scholar
  13. Persson, S., M.B. Edlund, R. Claesson, and J. Carlsson. 1990. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol. Immunol. 5, 195–201.CrossRefPubMedGoogle Scholar
  14. Roldan, S., E.G. Winkel, D. Herrera, M. Sanz, and A.J. van Winkelhoff. 2003. The effects of a new mouthrinse containing chlorhexidine, cetylpyridinium chloride and zinc lactate on the microflora of oral halitosis patients: a dual-centre, double-blind placebo-controlled study. J. Clin. Periodontol. 30, 427–434.CrossRefPubMedGoogle Scholar
  15. van den Broek, A.M.W.T., L. Feenstra, and C. de Baat. 2008. A review of the current literature on management of halitosis. Oral Dis. 14, 30–39.PubMedGoogle Scholar
  16. Wäler, S.M. 1997. The effect of some metal ions on volatile sulfurcontaining compounds originating from the oral cavity. Acta Odontol. Scand. 55, 261–264.CrossRefPubMedGoogle Scholar
  17. Young, A., G. Jonski, G. Rölla, and S.M. Wäler. 2001. Effects of metal salts on the oral production of volatile sulfur-containing compounds (VSC). J. Clin. Periodontol. 28, 776–781.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eun-Kyoung Choi
    • 1
  • Hye-Hyang Lee
    • 1
  • Mi-Sun Kang
    • 1
  • Byung-Gook Kim
    • 2
  • Hoi-Soon Lim
    • 2
  • Seon-Mi Kim
    • 2
  • In-Chol Kang
    • 1
    • 2
  1. 1.Brain Korea 21 ProgramChonnam National University Dental SchoolGwangjuRepublic of Korea
  2. 2.Dental Science Research InstituteChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations