The Journal of Microbiology

, Volume 47, Issue 2, pp 162–166 | Cite as

Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood



Strain B31T is a Gram-staining-negative, motile, and extremely halophilic archaeon that was isolated from salt-fermented seafood. Its morphology, physiology, biochemical features, and 16S rRNA gene sequence were determined. Phylogenetic analysis of its 16S rRNA gene sequence and composition of its major polar lipids placed this archaeon in the genus Halorubrum of the family Halobacteriaceae. Strain B31T showed 97.3, 97.2, and 96.9 % 16S rRNA similarity to the type strains of Halorubrum alkaliphilum, Hrr. tibetense, and Hrr. vacuolatum, respectively. Its major polar lipids were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and sulfated diglycosyl diether (S-DGD). Genomic DNA from strain B31T has a 61.7 mol% G+C content. Analysis of 16S rRNA gene sequences, as well as physiological and biochemical tests, identified genotypic and phenotypic differences between strain B31T and other Halorubrum species. The type strain of the novel species is B31T (=JCM 15757T =DSM 19504T).


Halorubrum cibi sp. nov. archaeon taxonomy salt-fermented seafood 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Castillo, A.M., M.C. Gutierrez, M. Kamekura, Y. Xue, Y. Ma, D.A. Cowan, B.E. Jones, W.D. Grant, and A. Ventosa. 2006. Halorubrum orientale sp. nov., a halophilic archaeon isolated from Lake Ejinor, Inner Mongolia, China. Int. J. Syst. Evol. Microbiol. 56, 2559–2563.CrossRefPubMedGoogle Scholar
  2. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.CrossRefPubMedGoogle Scholar
  3. Cui, H.L., D. Tohty, P.J. Zhou, and S.J. Liu. 2006. Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int. J. Syst. Evol. Microbiol. 56, 1631–1634.CrossRefPubMedGoogle Scholar
  4. Dussault, H.P. 1955. An improved technique for staining red halophilic bacteria. J. Bacteriol. 70, 484–485.PubMedGoogle Scholar
  5. Euzeby, J.P. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47, 590–592.CrossRefPubMedGoogle Scholar
  6. Ezaki, T., H. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.CrossRefGoogle Scholar
  7. Fan, H., Y. Xue, Y. Ma, A. Ventosa, and W.D. Grant. 2004. Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int. J. Syst. Evol. Microbiol. 54, 1213–1216.CrossRefPubMedGoogle Scholar
  8. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefPubMedGoogle Scholar
  9. Felsenstein, J. 2005. PHYLIP — Phylogeny Inference Package, version 3.6. Distributed by the author. University of Washington, Seattle, WA, USA.Google Scholar
  10. Feng, J., P. Zhou, Y.G. Zhou, S.J. Liu, and K. Warren-Rhodes. 2005. Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int. J. Syst. Evol. Microbiol. 55, 149–152.CrossRefPubMedGoogle Scholar
  11. Gerhardt, P., R.G.E. Murray, W.A. Wood, and N.R. Krieg. 1994. Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C., USA.Google Scholar
  12. Gonzalez, C., C. Gutierrez, and C. Ramirez. 1978. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 24, 710–715.PubMedGoogle Scholar
  13. Gonzalez, J.M. and C. Saiz-Jimenez. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.CrossRefPubMedGoogle Scholar
  14. Gutierrez, C. and C. Gonzalez. 1972. Method for simultaneous de tection of proteinase and esterase activities in extremely halophilic bacteria. Appl. Microbiol. 24, 516–517.PubMedGoogle Scholar
  15. Hu, L., H. Pan, Y. Xue, A. Ventosa, D.A. Cowan, B.E. Jones, W.D. Grant, and Y. Ma. 2008. Halorubrum luteum sp. nov., isolated from Lake Chagannor, inner Mongolia, China. Int. J. Syst. Evol. Microbiol. 58, 1705–1708.CrossRefPubMedGoogle Scholar
  16. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefPubMedGoogle Scholar
  17. Kluge, A.G. and F.S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18, 1–32.CrossRefGoogle Scholar
  18. McGenity, T.J. and W.D. Grant. 1995. Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst. Appl. Microbiol. 18, 237–243.Google Scholar
  19. McGenity, T.J. and W.D. Grant. 2001. Genus VII. Halorubrum, p. 320–324. In D.R. Boone, R.W. Castenholz, and G.M. Garrity (eds.), Bergey’s Manual of Systematic Bacteriology, Springer, New York, N.Y., USA.Google Scholar
  20. Montalvo-Rodriguez, R., J. Lopez-Garriga, R.H. Vreeland, A. Oren, A. Ventosa, and M. Kamekura. 2000. Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int. J. Syst. Evol. Microbiol. 50, 1065–1071.PubMedGoogle Scholar
  21. Mwatha, W.E. and W.D. Grant. 1993. Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int. J. Syst. Bacteriol. 43, 401–404.CrossRefGoogle Scholar
  22. Oren, A., A. Ventosa, and W.D. Grant. 1997. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int. J. Syst. Bacteriol. 47, 233–238.CrossRefGoogle Scholar
  23. Purdy, K.J., T.D. Cresswell-Maynard, D.B. Nedwell, T.J. McGenity, W.D. Grant, K.N. Timmis, and T.M. Embley. 2004. Isolation of haloarchaea that grow at low salinities. Environ. Microbiol. 6, 591–595.CrossRefPubMedGoogle Scholar
  24. Roh, S.W., Y. Sung, Y.D. Nam, H.W. Chang, K.H. Kim, J.H. Yoon, C.O. Jeon, H.M. Oh, and J.W. Bae. 2008. Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J. Microbiol. 46, 40–44.CrossRefPubMedGoogle Scholar
  25. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  26. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, N.Y., USA.Google Scholar
  27. Sehgal, S.N. and N.E. Gibbons. 1960. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can. J. Microbiol. 6, 165–169.CrossRefPubMedGoogle Scholar
  28. Suh, H.K. and S.S. Yoon. 1987. A study on the regional characteristics of Korean chotkal. Korean J. Dietary Culture 2, 45–54.Google Scholar
  29. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.CrossRefPubMedGoogle Scholar
  30. Tindall, B.J. 1990. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66, 199–202.CrossRefGoogle Scholar
  31. Ventosa, A., J.J. Nieto, and A. Oren. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544.PubMedGoogle Scholar
  32. Wayne, L.G., D.J. Brenner, and R.R. Colwell. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar
  33. Xin, H., T. Itoh, P. Zhou, K. Suzuki, M. Kamekura, and T. Nakase. 2000. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int. J. Syst. Evol. Microbiol. 50, 1297–1303.PubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2009

Authors and Affiliations

  1. 1.Department of BiologyKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations