Advertisement

The Journal of Microbiology

, Volume 47, Issue 3, pp 235–247 | Cite as

Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge

  • Huaiyang Zhou
  • Jiangtao Li
  • Xiaotong Peng
  • Jun Meng
  • Fengping Wang
  • Yuncan Ai
Article

Abstract

Submarine hydrothermal vents are among the least-understood habitats on Earth but have been the intense focus of research in the past 30 years. An active hydrothermal sulfide chimney collected from the Dudley site in the Main Endeavour vent Field (MEF) of Juan de Fuca Ridge was investigated using mineralogical and molecular approaches. Mineral analysis indicated that the chimney was composed mainly of Fe-, Zn-and Cu-rich sulfides. According to phylogenetic analysis, within the Crenarchaeota, clones of the order Desulfurococcales predominated, comprising nearly 50% of archaeal clones. Euryarchaeota were composed mainly of clones belonging to Thermococcales and deep-sea hydrothermal vent Euryarchaeota (DHVE), each of which accounted for about 20% of all clones. Thermophilic or hyperthermophilic physiologies were common to the predominant archaeal groups. More than half of bacterial clones belonged to ɛ-Proteobacteria, which confirmed their prevalence in hydrothermal vent environments. Clones of Proteobacteria (γ-, δ-, β-), Cytophaga-Flavobacterium-Bacteroides (CFB) and Deinococcus-Thermus occurred as well. It was remarkable that methanogens and methanotrophs were not detected in our 16S rRNA gene library. Our results indicated that sulfur-related metabolism, which included sulfur-reducing activity carried out by thermophilic archaea and sulfur-oxidizing by mesophilic bacteria, was common and crucial to the vent ecosystem in Dudley hydrothermal site.

Keywords

Dudley hydrothermal chimney microbial diversity sulfur-related metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.PubMedGoogle Scholar
  2. Bae, S.S., Y.J. Kim, and S.H. Yang. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16, 1826–1831.Google Scholar
  3. Bano, N., S. Ruffin, B. Ransom, and J.T. Hollibaugh. 2004. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl. Environ. Microbiol. 70, 781–789.PubMedCrossRefGoogle Scholar
  4. Blöchl, E., R. Rachel, S. Burggraf, D. Hafenbradl, H.W. Jannasch, and K.O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1, 14–21.PubMedCrossRefGoogle Scholar
  5. Boetius, A., C. Schubert, and D. Rickert. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626.PubMedCrossRefGoogle Scholar
  6. Bond, P.L. and J.F. Banfield. 2001. Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microbiol. Ecol. 41, 149–161.Google Scholar
  7. Brazelton, W., M. Schrenk, D. Kelley, and J. Baross. 2006. Methaneand sulfur-metabolizing microbial communities dominate the lost city hydrothermal field ecosystem. Appl. Environ. Microbiol. 72, 6257–6270.PubMedCrossRefGoogle Scholar
  8. Butterfield, D.A., R.E. McDuff, M.J. Mottl, M.D. Lilley, J.E. Lupton, and G.J. Massoth. 1994. Gradients in the composition of hydrothermal fluids from the endeavour segment vent field: Phase seperation and brine loss. J. Geophys. Res. 99, 9561–9583.CrossRefGoogle Scholar
  9. Corlis, J.B., J. Dymon, L.I. Gordon, J.M. Edmond, and R.P. Von Herzen. 1979. Submarine thermal springs on the Galapagos Rift. Science 203, 1073–1083.CrossRefGoogle Scholar
  10. Corre, E., A.L. Reysenbach, and D. Prieur. 2001. Epsilon-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol. Lett. 205, 329–335.PubMedGoogle Scholar
  11. Cowen, J.P. 2004. The microbial biosphere of sediment buried oceanic basement. Res. Microbiol. 155, 497–506.PubMedCrossRefGoogle Scholar
  12. Delaney, J.R., V. Robigou, R.E. McDuff, and M.K. Tivey. 1992. Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge. J. Geophys. Res. 97, 19663–19682.CrossRefGoogle Scholar
  13. Delong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685–5689.PubMedCrossRefGoogle Scholar
  14. Dilly, O., J. Bloem, A. Vos, and J.C. Munch. 2004. Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70, 468–474.PubMedCrossRefGoogle Scholar
  15. Donval, J.P., J.L. Charlou, and E. Douville. 1997. High H2 and CH4 content in hydrothermal fluids from Rainbow site newly sampled at 36°14′N on the AMAR segment, Mid-Atlantic Ridge (diving FLORES cruise, 1997). Comparison with other MAR sites. EOS Trans. 78, 832.Google Scholar
  16. Ehrhardt, C.J., R.M. Haymon, M.G. Lamontagne, and P.A. Holden. 2007. Evidence for hydrothermal Archaea within the basaltic flanks of the East Pacific Rise. Environ. Microbiol. 9, 900–912.PubMedCrossRefGoogle Scholar
  17. Finster, K., W. Liesack, and B. Tindall. 1997. Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur reducing bacterium. Int. J. Syst. Bacteriol. 47, 1212–1217.PubMedCrossRefGoogle Scholar
  18. Goffredi, S.K., A. Warén, V.J. Orphan, C.L. van Dover, and R.C. Vrijenhoek. 2004. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl. Environ. Microbiol. 70, 3082–3090.PubMedCrossRefGoogle Scholar
  19. Hao, X. and K. Ma. 2003. Minimal sulfur requirement for growth and sulfur-dependent metabolism of the hyperthermophilic archaeon Staphylothermus marinus. Archaea 1, 191–197.PubMedCrossRefGoogle Scholar
  20. Harmsen, H.J.M., D. Prieur, and C. Jeanthon. 1997. Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl. Environ. Microbiol. 63, 2876–2883.PubMedGoogle Scholar
  21. He, J.Z., J.P. Shen, L.M. Zhang, and Y.G. Zhu. 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 9, 2364–2374.PubMedCrossRefGoogle Scholar
  22. Hoek, J., A. Banta, F. Hubler, and A.L. Reysenbach. 2003. Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent filed on the central indian ridge. Geobiology 1, 119–127.CrossRefGoogle Scholar
  23. Huber, H. and K.O. Stetter. 1998. Hyperthermophiles and their possible potential in biotechnology. J. Bacteriol. 64, 39–52.Google Scholar
  24. Huber, H. and K.O. Stetter. 2001. Order I. Thermoproteales, p. 170–179. In D.R. Boone and R.W. Castenholz (eds.), Bergey’s Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer, New York, N.Y., USA.Google Scholar
  25. Huber, J.A., P.H. Johnson, D.A. Butterfield, and J.A. Baross. 2006. Microbial life in ridge flank crustal fluids. Environ. Microbiol. 8, 88–99.PubMedCrossRefGoogle Scholar
  26. Inagaki, F., K. Takai, H. Kobayashi, K.H. Nealson, and K. Horikoshi. 2003. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 53, 1801–1805.PubMedCrossRefGoogle Scholar
  27. Inagaki, F., K. Takai, K.H. Nealson, and K. Horikoshi. 2004. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from the Okinawa Trough hydrothermal sediments. Int. J. Syst. Evol. Microbiol. 54, 1477–1482.PubMedCrossRefGoogle Scholar
  28. Kashefi, K. and D.R. Lovely. 2003. Extending the upper temperature limit for life. Science 301, 934.PubMedCrossRefGoogle Scholar
  29. Kelley, D.S., J.A. Baross, and J.R. Delaney. 2002. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet Sci. 30, 385–491.CrossRefGoogle Scholar
  30. Kelley, D.S., J.A. Karson, and D.K. Blackman. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412, 145–149.PubMedCrossRefGoogle Scholar
  31. Kormas, K.A., M.K. Tivey, K.V. Damm, and A. Teske. 2006. Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise). Environ. Microbiol. 8, 909–920.PubMedCrossRefGoogle Scholar
  32. Kuwabara, T., M. Minaba, N. Ogi, and M. Kamekura. 2007. Thermococcus celericrescens sp. nov., a fastgrowing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 57, 437–443.PubMedCrossRefGoogle Scholar
  33. Lane, D.J. 1991. 16S/23S rRNA sequencing, p. 115–175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. Wiley, Chichester, UK.Google Scholar
  34. Lathe, R. 1985. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J. Mol. Biol. 183, 1–12.PubMedCrossRefGoogle Scholar
  35. Lepage, E., E. Marguet, C. Geslin, O. Matte-Tailliez, W. Zillig, P. Forterre, and P. Tailliez. 2004. Molecular diversity of new Thermococcales isolates from a single area of hydrothermal deep-sea vents as revealed by randomly amplified polymorphic DNA fingerprinting and 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 70, 1277–1286.PubMedCrossRefGoogle Scholar
  36. Lilley, M.D., D.A. Butterfield, J.E. Lupton, and E.J. Olson. 2003. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422, 878–881.PubMedCrossRefGoogle Scholar
  37. Lilley, M.D., D.A. Butterfield, E.J. Olson, J.E. Lupton, S.A. Macko, and R.E. Mcduff. 1993. Anomalous CH4 and NH4 + concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364, 45–47.CrossRefGoogle Scholar
  38. Longnecker, K. and A.L. Reysenbach. 2001. Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol. Ecol. 35, 287–293.PubMedGoogle Scholar
  39. López-García, P., S. Duperron, P. Philippot, J. Foriel, J. Susini, and D. Moreira. 2003. Bacterial diversity in hydrothermal sediment and epsilon-proteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol. 5, 961–976.PubMedCrossRefGoogle Scholar
  40. López-García, P., F. Gaill, and D. Moreira. 2002. Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ. Microbiol. 4, 204–215.PubMedCrossRefGoogle Scholar
  41. Maidak, B.L., J.R. Cole, T.G. Lilburn, C.T. Parker, P.R. Saxman, R.J. Farris, G.M. Garrity, G.L. Olsen, T.M. Schmidt, and J.M. Tiedje. 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29, 173–174.PubMedCrossRefGoogle Scholar
  42. McCollom, T.M. and E.L. Shock. 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim. Cosmochim. Acta 61, 4375–4391.PubMedCrossRefGoogle Scholar
  43. Miroshnichenko, M.L., S.L. Haridon, and C. Jeanthon. 2003. Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 53, 747–752.PubMedCrossRefGoogle Scholar
  44. Nakagawa, S., K. Takai, F. Inagaki, K. Horikoshi, and Y. Sako. 2005. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the e-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 55, 925–933.PubMedCrossRefGoogle Scholar
  45. Nercessian, O., M. Prokofeva, A. Lebedinski, S. L’Haridon, C. Cary, D. Prieur, and C. Jeanthon. 2004. Design of 16S rRNA-targeted oligonucleotide probes for detecting cultured and uncultured archaeal lineages in hightemperature environments. Environ. Microbiol. 6, 170–182.PubMedCrossRefGoogle Scholar
  46. Nercessian, O., A.L. Reysenbach, D. Prieur, and C. Jeanthon. 2003. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise. Environ. Microbiol. 5, 492–502.PubMedCrossRefGoogle Scholar
  47. Page, A., S.K. Juniper, M. Olagnon, K. Alain, G. Desrosiers, J. Querellou, and M.A. Cambon-Bonavita. 2004. Microbial diversity associated with a Paralvinella sulfincola tube and the adjacent substratum on an active deep-sea vent chimney. Geobiology 2, 225–238.CrossRefGoogle Scholar
  48. Page, A., M.K. Tivey, D.S. Stakes, and A.L. Reysenbach. 2008. Temporal and spatial archaeal colonization of hydrothermal vent deposits. Environ. Microbiol. 10, 874–884.PubMedCrossRefGoogle Scholar
  49. Perner, M., J. Kuever, and R. Seifert. 2007. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15N on the Mid-Atlantic Ridge. FEMS Microbiol. Ecol. 61, 97–109.PubMedCrossRefGoogle Scholar
  50. Poltz, M.F. and C.M. Cavanaugh. 1995. Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc. Natl. Acad. Sci. USA 92, 7232–7236.CrossRefGoogle Scholar
  51. Prieur, D. 1997. Microbiology of deep-sea hydrothermal vents. Trends Biotechnol. 15, 242–244.CrossRefGoogle Scholar
  52. Reysenbach, A.L., Y.T. Liu, A.B. Banta, and T.J. Beveridge. 2006. Isolation of a ubiquitous obligate thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442, 444–447.PubMedCrossRefGoogle Scholar
  53. Reysenbach, A.L., K. Longnecker, and J. Kirshtein. 2000. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a mid-atlantic ridge hydrothermal vent. Appl. Environ. Microbiol. 66, 3798–3806.PubMedCrossRefGoogle Scholar
  54. Schrenk, M.O., D.S. Kelley, J.R. Delaney, and J.A. Baross. 2003. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69, 3580–3592.PubMedCrossRefGoogle Scholar
  55. Takai, K. and K. Horikoshi. 1999. Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285–1297.PubMedGoogle Scholar
  56. Takai, K., F. Inagaki, S. Nakagawa, H. Hirayama, T. Nunoura, and Y. Sako. 2003. Isolation and phylogenetic diversity of members of previously uncultivated ɛ-Proteobacteria in deep-sea hydrothermal vents. FEMS Microbiol. Lett. 218, 167–174.PubMedGoogle Scholar
  57. Takai, K., T. Komatus, F. Inagaki, and K. Horikoshi. 2001. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67, 3618–3629.PubMedCrossRefGoogle Scholar
  58. Teske, A., K.U. Hinrichs, and V. Edgcomb. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68, 1994–2007.PubMedCrossRefGoogle Scholar
  59. Tivey, M.K. and J.R. Delaney. 1986. Growth of large sulfide structures on the endeavour segment of the Juan de Fuca Ridge. Earth Planet. Sci. Lett. 77, 303–317.CrossRefGoogle Scholar
  60. Tivey, M.K., D.S. Stakes, T.L. Cook, M.D. Hannington, and S. Petersen. 1999. A model for growth of steep-sided vent structures on the endeavour segment of the Juan de Fuca Ridge: results of a petrologic and geochemical study. J. Geophys. Res. 104, 22859–22883.CrossRefGoogle Scholar
  61. Urakawa, H., N. Dubilier, Y. Fujiwara, D.E. Cunningham, S. Kojima, and D.A. Stahl. 2005. Hydrothermal vent gastropods from the same family (Provannidae) harbour ɛ- and γ-proteobacterial endosymbionts. Environ. Microbiol. 7, 750–754.PubMedCrossRefGoogle Scholar
  62. Van Dover, C.L., S.E. Humphris, and D. Fornari. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818–823.PubMedCrossRefGoogle Scholar
  63. Von Dam, K.L. and M.D. Lilley. 2004. Diffuse flow hydrothermal fluids from 9°50′N East Pacific Rise: orgin, evolution and biogeochemical controls, p. 245–268. In W.S.D. Wilcock, E.F. Delong, D.S. Kelley, J.A. Baross, and S.C. Cary (eds.), The subseafloor Biosphere at Mid-Ocean Ridges. Geophys Union Monogr Ser, Washington, D.C., USA.Google Scholar
  64. Zerkle, A.L., C.H. House, and S.L. Brantley. 2005. Biogeochemical signatures through time as inferred from whole microbial genomes. Am. J. Sci. 305, 467–502.CrossRefGoogle Scholar
  65. Zhou, J., M. Bruns, and J. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322.PubMedGoogle Scholar
  66. Zillig, W. and A.L. Reysenbach. 2001. Thermococcaceae fam. nov., p. 341–348. In D.R. Boone and R.W. Castenholz (eds.), Bergey’s Manual of Systematic Bacteriology. Springer, New York, N.Y., USA.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2009

Authors and Affiliations

  • Huaiyang Zhou
    • 1
    • 2
  • Jiangtao Li
    • 1
    • 2
  • Xiaotong Peng
    • 2
  • Jun Meng
    • 3
  • Fengping Wang
    • 3
  • Yuncan Ai
    • 4
  1. 1.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouP. R. China
  2. 2.State Key Laboratory of Marine GeologyTongji UniversityShanghaiP. R. China
  3. 3.Key Laboratory of Marine Biogenetic ResourcesThird Institute of Oceanography, SOAXiamenP. R. China
  4. 4.State Key Laboratory of BiocontrolSun Yat-sen UniversityGuangzhouP. R. China

Personalised recommendations