The Journal of Microbiology

, Volume 47, Issue 2, pp 167–171

Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium

  • Gil-Jae Joo
  • Sang-Mo Kang
  • Muhammad Hamayun
  • Sang-Kuk Kim
  • Chae-In Na
  • Dong-Hyun Shin
  • In-Jung Lee


We isolated 864 bacteria from 553 soil samples and bioassayed them on cucumber and crown daisy for plant growth promotion. A new bacterial strain, Burkholderia sp. KCTC 11096BP gave maximum growth promotion and was selected for further investigations. The culture filtrate of this bacterium was thus analyzed for the presence of gibberellins and we found physiologically active gibberellins were found (GA1, 0.23 ng/100 ml; GA3, 5.11 ng/100 ml and GA4, 2.65 ng/100 ml) along with physiologically inactive GA9, GA12, GA15, GA20, and GA24. The bacterial isolate also solubilised tricalcium phosphate and lowered the pH of the medium during the process. The isolate was identified as a new strain of Burkholderia through phylogenetic analysis of 16S rDNA sequence. Gibberellin production capacity of genus Burkholderia is reported for the first time in current study.


Burkholderia gibberellins phosphate solubilization plant growth phylogenetic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd-Alla, M.H. 1994. Phosphates and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett. Appl. Microbiol. 18, 294–296.CrossRefGoogle Scholar
  2. Adachi, M., Y. Sako, and Y. Ishida. 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol. 32, 424–432.CrossRefGoogle Scholar
  3. Amies, C.R. 1967. A modified formula for the preparation of Stuart’s transport medium. Can. J. Publ. Health 58, 296–300.Google Scholar
  4. Bastián, F., A. Cohen, P. Piccoli, V. Luna, R. Baraldi, and R. Bottini. 1998. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Reg. 24, 7–11.CrossRefGoogle Scholar
  5. Bertrand, H., C. Plassard, X. Pinochet, B. Toraine, P. Normand, and J.C. Cleyet-Marel. 2000. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can. J. Microbiol. 46, 229–236.CrossRefPubMedGoogle Scholar
  6. Bloemberg, G.V. and B.J.J. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4, 343–350.CrossRefPubMedGoogle Scholar
  7. Cassán, F., R. Bottini, G. Schneider, and P. Piccoli. 2001a. Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol. 125, 2053–2058.CrossRefPubMedGoogle Scholar
  8. Cassán, F., C. Lucangeli, R. Bottini, and P. Piccoli. 2001b. Azospirillum spp. Metabolize [17,17-2H2]Gibberellin A20 to [17,17-2H2] Gibberellin A1 in vivo in dy rice mutant seedlings. Plant Cell Physiol. 42, 763–767.CrossRefPubMedGoogle Scholar
  9. Dobert, R.C., S.B. Rood, and D.G. Blevins. 1992. Gibberellins and the legume-Rhizobium symbiosis. I. Endogenous gibberellins of lima bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol. 98, 221–224.CrossRefPubMedGoogle Scholar
  10. Franck, C., J. Lammertyn, and B. Nicolaï. 2005 Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears, In F. Mencarelli and P. Tonutti. Proceedings of 5th International Postharvest Symposium. Acta Hort. 682, 1991–1998.Google Scholar
  11. Fulchieri, M., C. Lucangeli, and R. Bottini. 1993. Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol. 34, 1305–1309.Google Scholar
  12. Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109–117.CrossRefGoogle Scholar
  13. Goldstein, A.H., R.D. Rogers, and G. Mead. 1993. Separating phosphate from ores via bioprocessing. Bioresour. Technol. 11, 1250–1254.Google Scholar
  14. Gutierrez-Manero, F.J., B. Ramos-Solano, A. Probanza, J. Mehouachi, F.R. Tadeo, and M. Talon. 2001. The plant-growth-promoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant. 111, 206–211.CrossRefGoogle Scholar
  15. Hilda, R. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339.CrossRefGoogle Scholar
  16. Illmer, P. and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24, 389–395.CrossRefGoogle Scholar
  17. Joo, G.J., Y.M. Kim, I.J. Lee, K.S. Song, and I.K. Rhee. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26, 487–491.CrossRefPubMedGoogle Scholar
  18. Kim, K.Y., D. Jordan, and H.B. Krishnan. 1997. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol. Lett. 153, 273–277.Google Scholar
  19. Kpomblekou, A.K. and M.A. Tabatabai. 1994. Effect of organic acids on release of P from phosphate rocks. Soil Sci. 158, 442–443.CrossRefGoogle Scholar
  20. Lee, I.J., K.R. Foster, and P.W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in Sorghum. Plant Physiol. 116, 1003–1010.CrossRefPubMedGoogle Scholar
  21. MacMillan, J. 2002. Occurence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20, 387–442.CrossRefGoogle Scholar
  22. Mitter, N., A. Srivastava, K. Renu, S. Ahamad, A. Sarbhoy, and D. Agarwal. 2002. Characterization of gibberellin producing strains of Fusarium moniliforme based on DNA polymorphism. Mycopathologia 153, 187–193.CrossRefPubMedGoogle Scholar
  23. Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Ecol. 170, 265–270.CrossRefGoogle Scholar
  24. Peix, A., A.A. Rivas-Boyero, P.F. Mateos, C. Rodirguez-Barrueco, E. Martinez-Molina, and E. Velazquez. 2002. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol. Biochem. 33, 103–110.CrossRefGoogle Scholar
  25. Persello-Cartieaux, F., L. Nussaume, and C. Robaglia. 2003. Tales from the underground: Molecular plant-rhizobacteria interactions. Plant Cell Environ. 26, 189–199.CrossRefGoogle Scholar
  26. Piccoli, P., D. Lucangeli, G. Schneider, and R. Bottini. 1997. Hydrolysis of [17,17-2H2]Gibberellin A20-Glucoside and [17,17-2H2]Gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul. 23, 179–182.CrossRefGoogle Scholar
  27. Piccoli, P., O. Masciarelli, and R. Bottini. 1996. Metabolism of 17,17 [2H2]-Gibberellins A4, A9, and A20 by Azospirillum lipoferum in chemically-defined culture medium. Symbiosis 21, 167–178.Google Scholar
  28. Sambrook, J. and D.W. Russel. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.Google Scholar
  29. Shekhar, N.C., S. Bhaclauriay, P. Kumar, H. Lal, R. Mondal, and D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 182, 291–296.CrossRefGoogle Scholar
  30. Song, O.R., S.J. Lee, Y.S. Lee, S.C. Lee, K.K. Kim, and Y.L. Choi. 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz. J. Microbiol. 39, 51–156.CrossRefGoogle Scholar
  31. Sudhakara, R.M., S. Kumar, K. Babita, and M.S. Reddy. 2002. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresour. Technol. 84, 187–189.CrossRefGoogle Scholar
  32. Sundara, B., V. Natarajan, and K. Hari. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 77, 43–49.CrossRefGoogle Scholar
  33. Yanni, Y.G., R.Y. Rizk, F.K. Abd El-Fattah, A. Squartini, V. Corich, A. Giacomini, F. de Bruijn, J. Rademaker, J. Maya-Flores, P. Ostrom, M. Vega-Hernández, R.I. Hollingsworth, E. Martínez-Molina, P. Mateos, E. Velázquez, J. Wopereis, E. Triplett, M. Umali-García, J.A. Anarna, B.G. Rolfe, J.K. Ladha, J. Hill, R. Mujoo, P.K. Ng, and F.B. Dazzo. 2001. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust. J. Plant Physiol. 28, 845–870.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2009

Authors and Affiliations

  • Gil-Jae Joo
    • 1
  • Sang-Mo Kang
    • 2
  • Muhammad Hamayun
    • 2
  • Sang-Kuk Kim
    • 3
  • Chae-In Na
    • 2
  • Dong-Hyun Shin
    • 2
  • In-Jung Lee
    • 2
  1. 1.Institute of Agricultural Science and TechnologyKyungpook National UniversityDae-guRepublic of Korea
  2. 2.School of Applied Biosciences, College of Agriculture and Life SciencesKyungpook National UniversityDae-guRepublic of Korea
  3. 3.Division of Crop ScienceGyongbuk Provincial Agricultural Technology AdministrationDae-guRepublic of Korea

Personalised recommendations